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0.  Introduction 
 
In many areas of engineering and science, linear time-invariant systems, known hereafter as LTI 
systems, are used as models of physical processes. In undergraduate courses the typical student 
has encountered a number of different representations for LTI systems. Described for the case of 
a unilateral, scalar input and output signals, ( )u t  and  ( )y t , signals that are defined for 0t ≥ , 
these representations include the 
 
(i) convolution representation: 

 
0

( ) ( ) ( )
t

y t h u t dτ τ τ= −∫  

where the unit-impulse response ( )h t  is a real function that provides a description of the system. 
 
(ii) transfer function representation: 
 ( ) ( ) ( )Y s H s U s=  
where ( )Y s , ( )H s , and ( )U s  are, respectively, the unilateral Laplace transforms of ( )y t , ( )h t , 
and ( )u t . Here ( )H s , a complex-valued function of the complex variable s , called the transfer 
function, provides a description of the system. 
 
(iii) thn -order differential equation representation: 
 ( ) ( 1) (1) ( ) ( 1) (1)

1 1 0 1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n
n n ny t a y t a y t a y t b u t b u t b u t b u t− −
− −+ + + + = + + + +  

where the parenthetical superscripts indicate time derivatives, and the real coefficients ka  and kb  
describe the system. 
 
(iv) n -dimensional state equation representation: 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

where ( )x t  is the 1n×  state vector, and the coefficient matrices describe the system. 
 
Each of these representations has utility for specific issues or analysis/design objectives, and each 
has an attendant set of assumptions, as well as advantages and disadvantages. One observation 
that can be made at the outset is that the first two representations involve only the input and 
output signals, ( )u t  and ( )y t , along with a signal (or Laplace transform) that represents the 
system. Furthermore, initial conditions are implicitly assumed to be zero, since an identically-
zero input signal yields an identically-zero output signal. The thn -order differential equation 
representation involves the input and output signals, and also their time derivatives. In addition 
the possibility of nonzero initial conditions is familiar from courses on differential equations. The 
n -dimensional state equation introduces new variables, the n  components of the state vector 

( )x t , that are involved in relating the input signal to the output signal. In this sense it is rather 
different from the representations (i) – (iii).  The state equation representation also admits the 
possibility of nonzero initial conditions on ( )x t . 
 
Remark  
It is interesting to observe how the most elementary LTI system, the identity system, where the 
output signal is identical to the input signal, fits within these representations. For the convolution 
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representation, we are led to choose ( ) ( )h t tδ= , the unit-impulse function, for the usual sifting 
property then verifies that for any continuous signal ( )u t  the response is ( ) ( )y t u t= . For input 
signals that are not continuous functions, technical issues arise. To give an extreme case, we 
would need to rely on the technically questionable convolution of two impulses to verify that the 
response of the identity system to a unit-impulse input is indeed a unit impulse. The transfer 
function of the identity system must of course be unity, while the differential equation 
representation of the identity system reduces more-or-less transparently to the 0n =  case with 

0 0 1a b= = . A state equation representation of the identity system would involve taking 0C =  
and 1D = , with dimension n  having any nonnegative integer value, though taking 0n =  seems 
preferable on grounds of economy.  
 
 
Despite this diversity of representations for LTI systems, matters are well in hand in that the 
relationships among them are well understood, and concepts or results in terms of one 
representation usually can be interpreted in terms of another. But not always; for example, there 
are state equation descriptions that cannot be rendered into an thn -order differential equations.  
 
One of our objectives is to present these relationships in a more careful and complete way than is 
typical in undergraduate courses. Another is to elucidate the relative advantages of one 
representation compared to another when addressing certain types of issues. Overall, our 
treatment should provide a useful bridge from the typical undergraduate control course to more 
advanced graduate courses in the analysis and design of multi-input, multi-output LTI systems, 
linear systems that are not time invariant, and nonlinear systems.  
 
It turns out that the convolution representation is in many ways the most general representation of 
the four. For example, the LTI system with unit-impulse response 

2

( ) th t e= , 0t ≥ , cannot be 
represented using the other options. However, from the viewpoint of many applications, the state 
equation is the most basic, and this is where we start. In the process of developing relationships 
among the four representations, issues of comparative generality will become clearer. Also we 
should note that every approach, technique, tool, and trick used in the development can be 
refined, or generalized, or rejected in favor of alternatives. Our choices are based largely on the 
objective of technical simplicity rather than mathematical elegance. 
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1.  LTI Systems Described by State Equations 
 
We consider the state equation representation  

 
( ) ( ) ( ) , 0 , (0)
( ) ( ) ( )

ox t Ax t Bu t t x x
y t Cx t Du t

= + ≥ =
= +

 

where the input signal ( )u t  and the output signal ( )y t  are scalar signals defined for 0t ≥ , and 
the state ( )x t  is an 1n×  vector signal, the entries of which are called the state variables. 
Conformability dictates that the coefficient matrices , , ,A B C  and D  have dimensions 

, 1,1 ,n n n n× × ×  and 1 1× , respectively. We assume that these matrices have real entries, unless 
otherwise noted. 
 
For many topics the “D-term” in the state equation plays little role beyond that of an irritating 
side issue. Regardless, we retain it for most of our discussions on two grounds: it appears in very 
simple examples, and it seems only reasonable that the class of LTI systems we study should 
include the identity system. 
 
We use a few simple examples to illustrate concepts throughout the treatment. 
 
Example 
To obtain a state equation description for an RLC electrical circuit, choosing capacitor voltages 
and inductor currents as state variables works in all but a few, special situations. The procedure is 
to label all capacitor and inductor voltages and currents, and then use Kirchoff’s laws to derive 
equations of the appropriate form in terms of these state variables. Consider the circuit  
 

 
 

with voltage source input ( )u t , and current output ( )Ci t  as shown. Using the labeled currents and 
voltages and applying KVL to the outer loop gives 

 ( ) ( ) ( )L C
dL i t u t v t
dt

= −  

This is in the desired form – derivative of a state variable in terms of the input signal and the state 
variables. Applying KCL at the top node gives 

 1( ) ( ) ( )C L C
dC v t i t v t
dt R

= −  

again an expression in the form we seek. Defining the state vector as 
( )

( )
( )

L

C

i t
x t

v t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

these two scalar equations can be packed into the 2 1×  vector state equation 
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0 1/ 1/

( ) ( ) ( )
1/ 1/ 0

L L
x t x t u t

C RC
−⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

The output signal in this case is  

 ( ) ( )C C
di t C v t
dt

=  

a quantity that is also directly described in terms of the state variables by the KCL result above. 
This can be written in the form 
 [ ]( ) 1 1/ ( )y t R x t= −  
to complete the state equation. The initial value (0)x  is of course given by the initial values of 
the inductor current and capacitor voltage.  
 
In this example a judicious choice of Kirchoff’s laws led directly to equations of the appropriate 
form for the state-variable derivatives and for the output signal in terms of the state variables. In 
other cases additional circuit equations might be needed to eliminate unwanted variables and 
obtain the appropriate state equation format.  
 
Example 
A simple, cartoon version of hydrology models proves useful in illustrating a number of concepts. 
Consider a cylindrical water bucket with cross-sectional area 2C ft  and water depth ( )x t ft  as 
shown below.  

 
We assume the inflow rate is 3( ) /u t ft sec  and the outflow rate through a hole in the bottom of 
the bucket is 3( ) /y t ft sec . The basic, and somewhat unrealistic, assumption we make is that the 
outflow rate is proportional to the depth of water in the bucket, 

 1( ) ( )y t x t
R

=  

where the constant R  has appropriate units. This assumption leads to a linear bucket model that, 
in some situations to be discussed in the sequel, is reasonable, at least as an approximation. 
 
A model for the bucket system follows directly from a calculation of the rate-of-change of the 
volume of water in the bucket as inflow rate minus the outflow rate: 
 ( ) ( ) ( )C x t u t y t= −  
Using the outflow rate assumption, this can be rewritten in state equation form as 

 

1 1( ) ( ) ( )

1( ) ( )

x t x t u t
RC C

y t x t
R

−
= +

=
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where the state – the water depth – is a scalar. Of course there is an implicit assumption in play 
here: the initial state (0) ox x=  must be nonnegative, and the inflow and outflow rates must be 
nonnegative for every 0t ≥ . In the sequel the nonnegativity and linearity assumptions will be 
addressed further. 
 
The utility of the linear bucket system as an example rests on the ability to interconnect bucket 
systems in various ways. Consider the parallel bucket system, two buckets with cross-sectional 
areas 1C  and 2C  connected via hose, with a second hole in the second bucket, and depths and 
input and output flow rates as labeled.  

 
We make the linearity assumptions that  

 2
2

1( ) ( )y t x t
R

=  

and that the flow rate in the connecting hose is proportional to the difference in depths in the two 
buckets. Assuming positive flow rate from left to right in the hose, the rates of change of volume 
in the two buckets are given by 

 
1 1 1 2

1

2 2 1 2 2
1 2

1( ) ( ) [ ( ) ( )]

1 1( ) [ ( ) ( )] ( )

C x t u t x t x t
R

C x t x t x t x t
R R

= − −

= − −
 

Packing these into vector form, with ( )x t  as the 2 1×  vector with components 1( )x t  and 2 ( )x t  
yields the state equation 

 

[ ]

1 1 1 1 1

1 2 1 2 2 2

2

1/( ) 1/( ) 1/
( ) ( ) ( )

1/( ) 1/( ) 1/( ) 0

( ) 0 1/ ( )

R C R C C
x t x t u t

R C R C R C

y t R x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦
=

 

The series connection of buckets is straightforward to analyze, and is given as an exercise.  
 
Example 
Many models in classical physics appear in the form of a scalar, thn -order, constant-coefficient, 
linear differential equation of the form 
 ( ) ( 1) (1)

1 1 0 0( ) ( ) ( ) ( ) ( )n n
ny t a y t a y t a y t b u t−
−+ + + + =  

where ( )y t  and ( )u t  represent the output and input signals, and initial conditions are given as  
 (1) ( 1)(0), (0), , (0)ny y y −…  
A standard, simple trick for converting this to state equation format simply involves naming the 
output and its first 1n −  derivatives as the state variables: 
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1
(1)

2

( 1)

( ) ( )

( ) ( )

( ) ( )n
n

x t y t

x t y t

x t y t−

=

=

=

 

Then the state-variable time derivatives can be written in terms of state variables and the input 
signal as 

 

1 2

2 3

1

0 1 1 2 1 0

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

n n

n n n

x t x t
x t x t

x t x t
x t a x t a x t a x t b u t
−

−

=
=

=

= − − − − +

 

where the first 1n −  of these equations are matters of definition, and the last equation is obtained 
by writing the differential equation in terms of the new variables. Packing this collection into 
vector form, and writing the obvious output equation gives the state equation description 

 

[ ]
0 1 2 1 0

0 1 0 0 0
0 0 1 0 0

( ) ( ) ( )
0 0 0 1 0

( ) 1 0 0 0 ( )
n

x t x t u t

a a a a b

y t x t
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

=

 

Initial conditions on the output and its time derivatives provide an initial state via the definitions, 

 

(1)

( 2)

( 1)

(0)
(0)

(0)
(0)
(0)

n

n

y
y

x
y
y

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
Linearization 
 
An important motivation for studying LTI systems is their utility in approximating nonlinear 
systems near a set point. First, recall Taylor approximation for a differentiable, real-valued 
function of  n  real variables, written in vector notation as ( )f x . Given a point  nx R∈  of 
interest, and a small (in norm) nx Rδ ∈ , we can write as an approximation 

 ( ) ( ) ( )ff x x f x x x
xδ δ
∂

+ ≈ +
∂

 

where the indicated derivative is a 1 n×  row vector of scalar partial derivatives, 

 
1

( ) ( ) ( )
n

f f fx x x
x x x

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

 

That is, 

 ( ) ( ) ( )ff x x f x x x
xδ δ
∂

+ − ≈
∂
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which gives a linear approximation for the deviation in the value of the function in terms of the 
(assumed small) deviation of the independent variable. 
 
It seems natural to use this idea to obtain a linear-system approximation of the behavior of a 
nonlinear system 
 ( ) ( ( ), ( )) , (0) ox t f x t u t x x= =  
where : n nf R R R× →  is differentiable, by invoking a linear approximation of f . Indeed this 
works in many situations, though we will not take the time to delineate conditions and limitations.  
 
Suppose for some constant input signal of interest, ( ) , 0u t u t= ≥ , there is a constant solution 

( ) , 0x t x t= ≥  ( among other things, note that ox x= ). That is, 
 0 ( , )f x u=  
 
Next consider an input signal ( )u t  that remains close to u  in the sense that the deviation quantity 
 ( ) ( )u t u t uδ = −  
remains small (in absolute value) for all 0t ≥ , and an initial state (0)x  that is close to x  in the 
sense that the deviation vector 
 (0) ox x xδ = −  
is small (in norm). It might be hoped that the resulting solution ( )x t  remains close to x  in the 
sense that the deviation 
 ( ) ( )x t x t xδ = −  
remains small (in norm) for all 0t ≥ . In terms of these deviation quantities, we can write the 
nonlinear system as 

 [ ]( ) ( ( ), ( )) , (0) o
d x x t f x x t u u t x x x
dt δ δ δ δ+ = + + + =  

That is 
 ( ) ( ( ), ( )) , (0) ox t f x x t u u t x x xδ δ δ δ= + + = −  
Now we apply the Taylor approximation to each component of f , namely, each  
 : n n

if R R R× →  
to write (keeping the arguments x  and u  distinct) 

 ( , ) ( , ) ( , ) ( , ) , 1, ,i i
i i

f ff x x u u f x u x u x x u u i n
x uδ δ δ δ

∂ ∂
+ + ≈ + + =

∂ ∂
…  

Of course, each ( , ) 0if x u = , /if x∂ ∂  is 1 n× ,  and /if u∂ ∂ , is a scalar. Packing the 
approximations into vector form gives 

 ( , ) ( , ) ( , )f ff x x u u x u x x u u
x uδ δ δ δ
∂ ∂

+ + ≈ +
∂ ∂

 

where the ,i j  entry of the n n×  matrix 

 ( , )f x u
x
∂
∂

 

is 

 ( , )i

j

f x u
x
∂
∂

 

and the thi entry of the 1n×  matrix 
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 ( , )f x u
u
∂
∂

 

is 

 ( , )if x u
u
∂
∂

 

 
In this way we pose the linear state equation 

 ( ) ( , ) ( ) ( , ) ( ) , (0) o
f fx t x u x t x u u t x x x
x uδ δ δ δ
∂ ∂

= + = −
∂ ∂

 

whose behavior for small initial states, (0)xδ  and small input signals ( )u tδ  is hoped to 
approximate the behavior of the nonlinear system in the sense that  
 ( ) ( ) , 0x t x x t tδ≈ + ≥  
If there is a (nonlinear) output equation, 
 ( ) ( ( ), ( ))y t h x t u t=  
another standard Taylor approximation of the function ( , )h x u  about ( , )x u  gives 

 ( ) ( , ) ( ) ( , ) ( )h hy t x u x t x u u t
x uδ δ δ
∂ ∂

= +
∂ ∂

 

as an approximate output equation, where the output deviation is defined by 
 ( ) ( ) ( , )y t y t h x uδ = −  
 
Example  
Written in a familiar notation, the description of a pendulum with a mass m  suspended by a 
massless rod from a frictionless pivot is 

 2

1( ) sin( ( )) ( )gy t y t u t
l ml

+ =  

where ( )y t  is the angle of the rod measured from the vertical below the pivot, and ( )u t  is the 
torque on the rod at the pivot. We can put this second-order nonlinear differential equation into 
state equation form using the same procedure as the linear case. Letting 
 1 2( ) ( ) , ( ) ( )x t y t x t y t= =  
gives 

 

[ ]

2

1 2

( )
( ) 1sin( ( )) ( )

( ) 1 0 ( )

x t
x t g x t u t

l ml
y t x t

⎡ ⎤
⎢ ⎥=
⎢ ⎥− +
⎣ ⎦

=

 

Taking 0u = , we see that 0x =  is one solution and the corresponding linearized state equation is 
specified by 

 

2

1 2
0, 0

2

1 2 2
0, 0

0 1
1sin( ) 0

0
1 1sin( )

x u

x u

x
A g gx x u

l ml l

x
B gu x u

l ml ml

= =

= =

⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥∂ − +
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥∂ − +
⎣ ⎦ ⎣ ⎦

 

Of course, 
 [ ]1 0C =  
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This can be recognized as the state equation for a harmonic oscillator, and we are led to the 
notion that for small initial states and small input signals the techniques for LTI systems that we 
discuss will be useful for analyzing the behavior of the pendulum. 
 
We can also consider the constant solution 

 0 ,
0

u x
π⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 

in which case the linearized state equation is specified by 

 

2

1 2
, 0

0

2

1 2 2
0, 0

0 1
1sin( ) 0

0
1 1sin( )

x u

x u

x
A g gx x u

l ml l

x
B gu x u

l ml ml

π⎡ ⎤
= =⎢ ⎥
⎣ ⎦

= =

⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥∂ − +
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥∂ − +
⎣ ⎦ ⎣ ⎦

 

In this case we might well be suspicious of the approximation notion, because of the obvious 
behavior of the pendulum for initial states near the upright position. 
 
Example 
Consider the basic water bucket system in our first example, but suppose the outflow rate is given 
by a nonlinear function of water depth: 

 1( ) ( )y t x t
R

=  

Consideration of the rate of change of volume now leads to the state equation 

 

1 1( ) ( ) ( )

1( ) ( )

x t x t u t
RC C

y t x t
R

−
= +

=
 

where, again, only nonnegative values of the variables are permitted. Choosing the constant 
solution of zero inflow rate and zero depth, 0, 0u x= = , calculation of the linearized state 
equation begins innocently enough, 

 
00

1 1 1
2 xx u

A x u
x RC C RC x == =

∂ − −⎡ ⎤= + =⎢ ⎥∂ ⎣ ⎦
 

but ends badly! The problem, of course, is that the right-hand side of the nonlinear state equation 
is not differentiable with respect to x  at 0x = . 
If we choose any positive inflow rate, 0u > , it is easy to verify that there is a constant solution 
given by 
 2 2x R u=  
and, as expected, the corresponding constant outflow rate is y u= . The coefficients of the 
linearized system are given by 
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2 2

2 2

2
,

,

2
,

,

1 1 1 1
22

1 1 1

1 1 1
22

1 0

x R ux x u u

x x u u

x R ux x u u

x x u u

A x u
x RC C R CuRC x

B x u
u RC C C

C x
x R R uR x

D x
u R

== =

= =

== =

= =

∂ − − −⎡ ⎤= + = =⎢ ⎥∂ ⎣ ⎦

∂ −⎡ ⎤= + =⎢ ⎥∂ ⎣ ⎦

∂ ⎡ ⎤= = =⎢ ⎥∂ ⎣ ⎦

∂ ⎡ ⎤= =⎢ ⎥∂ ⎣ ⎦

 

Therefore, with 

 2 2

( ) ( )

( ) ( ) ( )
( ) ( )

u t u t u

x t x t x x t R u
y t y t u

δ

δ

δ

= −

= − = −

= −

 

we obtain the approximating linear state equation (for 0u> ) 

 

2 2
2

2

1 1( ) ( ) ( ) , (0)
2

1( ) ( )
2

ox t x t u t x x R u
R Cu C

y t x t
R u

δ δ δ δ

δ δ

−
= + = −

=
 

 
 
Changes of state variables 
 
Reflection on the examples we have considered indicates that various choices can be made for the 
state variables in developing a state equation description for a system. For the electrical circuit, 
voltages at various nodes and currents in various loops could be chosen. And for the parallel 
bucket system, we could choose the water depth in the first bucket and the difference in depths 
between the first and second buckets as state variables. In the bucket case, this corresponds to 
considering the effect of the variable change 

 1 1

2 2

( ) ( )1 0
( ) ( )1 1

z t x t
z t x t
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
 

on the original state equation. 
 
In general, for the state equation 

 
( ) ( ) ( ) , (0)
( ) ( ) ( )

ox t Ax t Bu t x x
y t Cx t Du t

= + =
= +

 

we consider a linear change of state vector of the form 
 1( ) ( )z t P x t−=  
where P  is an n n× , invertible matrix. (We usually think of P  as a real matrix, though complex 
variable changes will arise for mathematical purposes.) Then it is easy to see that 

 
1 1 1

1 1

( ) ( ) ( ) ( )
( ) ( )

z t P x t P Ax t P Bu t
P APz t P Bu t

− − −

− −

= = +

= +
 

and 
 ( ) ( ) ( )y t CPx t Du t= +  
The initial state in terms of the new state vector is 
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 1(0) oz P x−=  
The new state equation, in terms of ( )z t , has the same form as the original (which is why only 
linear, constant variable changes are considered), and either state equation can be used to 
represent the system. Indeed, there are an infinite number of choices for the invertible, n n×  
matrix P , and so there are an infinite number of state equations that can be used to describe a 
given system! 
 
In the sequel we will consider a small number of variable changes that are useful for particular 
mathematical purposes. In most cases the new state variables are not physically intuitive and this 
is the price paid for mathematical simplicity. 
 
Distinct-Eigenvalue Diagonal Form 
 
Suppose for the linear state equation 

 
( ) ( ) ( ) , (0)
( ) ( ) ( )

ox t Ax t Bu t x x
y t Cx t Du t

= + =
= +

 

the n n×  matrix A  has eigenvalues 1, , nλ λ… . Some eigenvalues may be complex, but these must 
occur in conjugate pairs. (By default, A  has real entries, so the characteristic polynomial of A  
has real coefficients, and complex roots of real-coefficient polynomials occur in complex 
conjugate pairs.) We denote the corresponding eigenvectors by 1, , np p… . That is, each ip  is a 
nonzero vector that satisfies 
 , 1, ,i i iAp p i nλ= = …  
Consider the change of state vector given by arranging the eigenvectors as the columns of a 
matrix: 
 [ ] 11

1 2( ) ( ) | | | ( )nz t P x t p p p x t−−= =  
Of course, we need to establish conditions under which this variable-change matrix, often called 
the modal matrix, indeed is invertible. Statements of a necessary and sufficient condition would 
involve notions such as the algebraic and geometric multiplicity of eigenvalues, so we state only a 
basic sufficient condition: 
 
Theorem 
If the eigenvalues of A  are distinct, then the modal matrix is invertible. 
 
Proof 
We will assume that the eigenvalues of A  are distinct and that P  is not invertible, and arrive at a 
contradiction that establishes the result. Since P  is not invertible, its columns are linearly 
independent, and we can assume that the first column can be written as a linear combination of 
the remaining columns: 
 1 2 2 n np p pα α= + +  
Multiplying this expression on the left by 2( )A Iλ−  yields 
 1 2 1 2 2 2 2 3 3 2 3 2( ) ( ) ( )n n nAp p Ap p Ap p Ap pλ α λ α λ α λ− = − + − + + −  
or, using the eigenvalue/eigenvector equation, 
 1 2 1 3 3 2 3 2( ) ( ) ( )n n np p pλ λ α λ λ α λ λ− = − + −  
Multiplying this expression on the left by 3( )A Iλ−  will, in a similar fashion, remove the first 
term on the right and yield 
 1 2 1 3 1 4 4 2 4 3 4 2 3( )( ) ( )( ) ( )( )n n n np p pλ λ λ λ α λ λ λ λ α λ λ λ λ− − = − − + − −  
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Continuing this process leads to, after multiplication by ( )nA Iλ− , 
 1 2 1 3 1 1( )( ) ( ) 0n pλ λ λ λ λ λ− − − =  
Because the eigenvalues are distinct, this implies that 1 0p = , which is impossible since 1p  is an 
eigenvector.  
 
It remains to compute the special form of the coefficient matrices of the new state equation, and 
the form of 1P AP−  involves a product of partitioned matrices, the result of which motivates the 
terminology: 

 

[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ] [ ]

11
1 2 1 2

1
1 2 1 2

1
1 2 1 1 2 2

1

1 2
1 2 1 2

1

2

| | | | | |

| | | | | |

| | | | | |

0 0 0
0 0 0

| | | | | |
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

n n

n n

n n n

n n

n

n

P AP p p p A p p p

p p p Ap Ap Ap

p p p p p p

p p p p p p

λ λ λ

λ
λ

λ

λ
λ

λ

−−

−

−

−

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The coefficients 1P B−  and CP  have no special structure, and so the advantage of the variable 
transformation is the diagonal “ A -matrix.” Of course, in the case where A  has complex 
eigenvalues, the matrix P  will have complex entries, and the new state equation will have 
complex coefficients. This fact obscures intuition that might have been present in the original 
state equation model, and is a price paid for the simple mathematical form obtained. 
 
Remark 
The distinct-eigenvalue hypothesis in our theorem is, as shown above, sufficient for 
diagonalizability, but it is not necessary. Readers interested in more general developments should 
investigate the Jordan form for matrices, a form that includes diagonal matrices as a special case. 
 
Exercises 
 
1. Using the usual assumptions write a linear state equation for the series bucket system shown 
below. 
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2.  Write a linear state equation for the electrical circuit shown below, where the current ( )i t  is 
the input and the output is the voltage ( )ov t . 

 
3.  Write a linear state equation for the electrical circuit shown below, where the voltage ( )u t  is 
the input and the output is the current y(t). 

 
 
4.  Write a linear state equation for the electrical circuit shown below, where the voltage ( )u t  is 
the input and the output is the current through 2R . 
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5. Rewrite the thn − order differential equation 

 ( ) ( 1)
1 0 0 1( ) ( ) ( ) ( ) ( )n n

ny t a y t a y t b u t b u t−
−+ + + = +  

as a dimension-n linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

  

Hint: Let ( 1)
1( ) ( ) ( )n

nx t y t b u t−= −  
 
6. A two-input, single-output system is described by 
 2 1 2( ) sin( ( )) ( ) ( ) ( )y t y t y t u t y t u u+ + = +  
Compute the linearized state equation that describes this system about the constant operating 
point corresponding to 1 20, 1u u= =  
 
7. Consider the nonlinear state equation (a so-called bilinear state equation) 

 
( ) ( ) ( ) ( ) ( ) , (0)
( ) ( )

ox t Ax t Dx t u t Bu t x x
y t Cx t

= + + =

=
 

where A and D are n n× , B is 1n× , and C is 1 n× . What is a necessary and sufficient condition 
for the system to have a constant nominal solution for a constant nominal input, ( )u t u= ? What 
is the linearized state equation about such a nominal solution. 
 
8. Consider a cone-shaped bucket depicted below, with the cone such that when ( ) 1x t =  the 
surface area of the water is 4. The orifice is such that ( ) (1/ 3) ( )y t x t= . Compute a linearized 
state equation description about the constant operating point with 2x = . (A math handbook will 

remind you that a cone of height x and base radius r has volume 2( / 3)V r xπ= .) 
 

 
 
9.  For the nonlinear state equation 
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2

1 2 3

1 2

2 ,
2

x u
x x x y x

x u x u

− +⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥−⎣ ⎦

 

show that for every constant nominal input u  there is a constant nominal trajectory x . What is 
the constant nominal output y  in terms of u ? Explain. Linearize the state equation about an 
arbitrary constant nominal. If 0u =  and (0) 0xδ = , what is the response ( )y tδ  of the linearized 
state equation for any ( )u tδ ? (Solution of the state equation is not needed to answer this.) 
 
10.  For the nonlinear state equation 

 

1

2
2 2

3 1 1 2 2

3

( ) ( )
( ) 2 ( ) ( )

3 ( ) ( ) 4 ( ) ( ) 4 ( )
( ) ( )

x t u t
x t x t u t

x t x t x t x t x t
y t x t

⎡ ⎤+
⎢ ⎥

= +⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥⎣ ⎦
=

 

compute a constant solution given any constant input ( )u t u= . Linearize the state equation about 
such a constant operating point. If (0) 0xδ = , what is the response ( )y tδ  given ( )u tδ ? (You 
don’t need to solve the state equation to answer the question.) 
 
11.  Find the linearized state equation that approximately describes the behavior of the nonlinear 
system 
 ( ) ( ) sin( ( )) ( ( ) 1) ( ) 0y t y t y t u t y t+ + − =  
about the constant operating point corresponding to ( ) 2, 0u t t= ≥ . 
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2. LTI State Equation Solutions 
 
The first issue to address is existence and uniqueness of solutions, for 0t ≥ , to the state equation 

 
( ) ( ) ( ), (0)
( ) ( ) ( )

ox t Ax t Bu t x x
y t Cx t Du t

= + =
= +

 

given an initial state ox  and an input signal ( )u t , 0t ≥ . However, we will leave that to 
mathematics courses, and simply apply perhaps the most basic method of solving differential 
equations - solution via power series.  This leads to a formula for a solution when the input is 
(identically) zero, and from there we discuss solution properties and the case of nonzero input 
signals. The focus is on the state, ( )x t , since the output signal, ( )y t , easily follows from 
knowledge of ( )x t  and ( )u t . 
 
Zero-Input Solution 
 
For the n -dimensional linear state equation with ( )u t , 0t ≥ , 
 ( ) ( ) , (0) ox t Ax t x x= =  
we assume a power series form for the solution and substitute into the equation. In this  vector 
case, we assume a power series in t  with 1n×  vector coefficients, written 

 
2

0 1 2( )
1! 2!
t tx t φ φ φ= + + +  

At 0t =  this gives 0 oxφ = , and we substitute the series expression into the differential equation 
to obtain 

 
2 2

1 2 3 1 21! 2! 1! 2!o
t t t tAx A Aφ φ φ φ φ+ + + = + + +  

Equating coefficients of like powers of t  gives 

 

1

2
2 1

3
3 2

o

o

o

Ax

A A x

A A x

φ

φ φ

φ φ

=

= =

= =
 

and we can write the series expression for the solution as 

 

2
2

2
2

( )
1! 2!

1! 2!

o o o

o

t tx t x Ax A x

t tI A A x

= + + +

⎛ ⎞
= + + +⎜ ⎟
⎝ ⎠

 

By analogy with the scalar case, 1n = , we denote the n n×  matrix series in this expression by the 
(matrix) exponential 

 
2

2

1! 2!
At t te I A A= + + +  

Of course this series can be viewed alternately as a power series with matrix coefficients, or as a 
matrix each entry of which scalar power series, though the latter view involves rather messy 
expressions for the scalar-entry series. 
 
Remark 
It can be shown that the series defining the matrix exponential converges uniformly in any finite 
interval of time, [ , ] , 0,t T T T∈ − >  and that for any finite time t  the series converges absolutely. 
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Uniform convergence is important for justifying term-by-term calculation of the derivative and 
integral of the function defined by the series. Absolute convergence implies that the terms in the 
series can be rearranged in various ways without changing the limit function. Both of these types 
of manipulations on the series are used in the sequel.  
 
We can now reconfirm by substitution that the solution arrived at by power series substitution 
indeed is a solution. First we use term-by-term differentiation to compute 

 

2
2

2 2
2 3 2

( ) ( )
1! 2!

( ) ( )
1! 2! 1! 2!

( )

At
o o

o o

At
o

d d t tx t e x I A A x
dt dt

t t t tA A A x A I A A x

Ae x Ax t

= = + + +

= + + + = + + +

= =

 

(The result of the term-by-term differentiation is another uniformly convergent series, and so the 
differentiation is valid.) Finally, evaluating at 0t =  shows that  
 0(0) A

o o ox e x Ix x= = =  
That this solution is the unique solution (for each initial state) is left to a course on differential 
equations. 
 
Summing the series to compute the matrix exponential usually is not an efficient approach for 
computing a solution, but there are exceptions. 
 
Example 
For  

 
0 1
0 0

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

the fact that 2 0A =  gives 

 
0 1
0 0 1

0 1

t t
e I At
⎡ ⎤
⎢ ⎥
⎣ ⎦ ⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

 

This example extends in the obvious way to the computation of the exponential for any nilpotent 
matrix A . 
 
Example 
For diagonal A , 

 

1

2

0 0
0 0
0 0 0
0 0 n

A

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

it is clear that every term in the series for Ate  is diagonal, and the thk  diagonal term of the series 
is 

 
2

21
1! 2!k k
t tλ λ+ + +  

This is the series defining the scalar exponential, and we conclude that 
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1

2

0 0
0 0
0 0 0
0 0 n

t

t
At

t

e
e

e

e

λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Further examples of the solution of zero-input state equations will make use of properties of the 
matrix exponential. 
 
Properties of the Matrix Exponential 
 
We present several properties of  Ate  that are useful for understanding the behavior of LTI 
systems. All of these properties are familiar in the scalar-exponential case ( 1n =  ), but some care 
is required as not all scalar-exponential properties generalize to the matrix case. The first property 
in our list is essentially a reformatting of vector differential equations into a matrix differential 
equation that leads to a characterization of the exponential. 
 
Property 1   
For the n n×  matrix differential equation, with identity initial condition, 
 ( ) ( ) , (0)X t AX t X I= =  
the unique solution is 
 ( ) AtX t e=  
 
Proof   
An easy term-by-term differentiation of the series for the claimed solution shows that the matrix 
exponential is a solution of the matrix differential equation that satisfies the initial condition. 
Uniqueness of this solution, for the given matrix initial condition, follows from uniqueness of 
state vector equation solutions by considering each column of the matrix equation.  
 
Property 2   
Given n n×  matrices A  and F , a necessary and sufficient condition that 
 ( ) , 0At Ft A F te e e t+= ≥  
is that the matrices commute, AF FA= . 
 
Proof    
The right side of the claimed expression can be written as 

 

2
( ) 2

2
2 2

( ) ( )
1! 2!

( ) ( )
1! 2!

A F t t te I A F A F

t tI A F A AF FA F

+ = + + + + +

= + + + + + + +
 

and the left side is 

 

2 2
2 2

2 2 2
2 2

2
2 2

1! 2! 1! 2!

1! 2! 1! 1! 2!

( ) ( 2 )
1! 2!

At Ft t t t te e I A A I F F

t t t t tI F F A AF A

t tI A F A AF F

⎛ ⎞⎛ ⎞
= + + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= + + + + + +

= + + + + + +
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If AF FA= , then the coefficients of like powers of t  in the two expressions are identical (though 
most terms are not displayed). On the other hand, if the two expressions are identical, 
differentiating twice (term-by-term, using uniform convergence) and evaluating at 0t =  gives 
 2 2 2 22A AF FA F A AF F+ + + = + +  
from which it follows that AF FA= .  
 
Property 3   
For every 1t  and 2t ,  
 1 2 1 2( )At At A t te e e +=  
Proof    
This follows from Property 2 by considering 1At  as “A,” and 2At  as “F.”  
 
Property 4   
For any value of t , Ate  is invertible, and  
 ( ) 1At Ate e

− −=  

 
Proof    
For any t  we can compute the product of Ate  and ( )At A te e− −= , in either order, by Property 3, 
taking 1t t=  and 2t t= − . This gives the n n×  identity matrix as the product, and so the two 
matrices are inverses of each other.  
 
Property 5   
For any n n× , invertible matrix P , 
 

1 1P APt Ate P e P
− −=  

 
Proof   
The easy fact that  
 1 1( ) , 0,1,k kP AP P A P k− −= = …  
leads to 

 

1
2

1 1 2

2
1 2

1

( ) ( )
1! 2!

( )
1! 2!

P APt

At

t te I P AP P AP

t tP I A A P

P e P

− − −

−

−

= + + +

= + + +

=

 

 
Example   
This provides a method to compute the matrix exponential when A  has distinct eigenvalues. For 
in this situation we can compute invertible P  such that  

 

1

21

0 0
0 0
0 0 0
0 0 n

P AP

λ
λ

λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and then use our earlier example  to conclude 
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1

21

0 0
0 0
0 0 0
0 0 n

t

t
P APt

t

e
e

e

e

λ

λ

λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

From this, Property 5 yields 

 

1

2
1

0 0
0 0
0 0 0
0 0 n

t

t
At

t

e
e

e P P

e

λ

λ

λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

a result that displays each entry of Ate  as a linear combination of exponentials of the eigenvalues 
of A .  
 
Remark   
A standard method for solving linear differential equations is to use the Laplace transform 
(unilateral Laplace transform since we consider signals defined for 0t ≥ ). For a matrix (or 
vector) function of time we define the Laplace transform to be the matrix of transforms of the 
entries – this preserves the linearity and derivative properties of the Laplace transform, as is 
easily seen by writing the following calculations out in scalar terms and repacking the results into 
matrix form. the Laplace transform of both sides of the n n×  matrix differential equation 
 ( ) ( ) , oX t AX t X I= =  
gives the algebraic equation 
 ( ) ( )osX s X AX s− =  
This gives 1( ) ( ) oX s sI A X−= − , and using the identity initial condition we conclude the 
following. 
 
Property 6    
The Laplace transform of the matrix exponential is given by 
 { } 1( )AtL e sI A −= −  

 
A general, and rather detailed, representation for the matrix exponential in terms of eigenvalues 
of A  can be obtained from the Laplace transform of the exponential and the partial fraction 
expansion approach to computing the inverse Laplace transform. We can write 

 1 adj( )( )
det( )

sI AsI A
sI A

− −
− =

−
 

where the denominator is a degree- n  polynomial in s , the characteristic polynomial of A . 
Furthermore, since the entries of the adjoint matrix in the numerator are computed from 
determinants of ( 1) ( 1)n n− × −  submatrices of ( )sI A− , in particular the cofactors of entries, it 
follows that each entry of the numerator is a polynomial in s  of degree at most 1n − . Thus we 
see that each entry of 1( )sI A −−  is a strictly-proper rational function of s , and of course the 
inverse transform of each entry can be computed by partial fraction expansion. Suppose 
 1

1det( ) ( ) ( ) lmm
lsI A s sλ λ− = − −  

where 1, , lλ λ…  are the distinct eigenvalues of A  with corresponding multiplicities 1, , 1lm m ≥… . 
Some of the distinct eigenvalues may be complex, but then the conjugates also are distinct 
eigenvalues, with the same multiplicity. 
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Now consider performing a partial fraction expansion on each of these entries. Every entry will 
be written as a linear combination of the terms 

 1 , 1, , ; 1, ,
( ) kj

k

k l j m
s λ

= =
−

… …  

of course typically with a number of the coefficients zero. Indeed, we can gather the coefficients 
into matrices and write the result as a ‘matrix partial fraction expansion’ 

 1

1 1

1( )
( )

kml

kj j
k j k

sI A W
s λ

−

= =

− =
−∑∑  

Each kjW  is an n n×  matrix of partial fraction expansion coefficients, and coefficients 
corresponding to complex kλ ’s appearing in an entry of kjW   will be complex if kλ  actually 

appears as a demoninator root of the corresponding entry of 1( )sI A −− . One can also present 
formulas for the kjW  matrices, based on formulas for partial fraction coefficients, but we simply 
take the inverse Laplace transform to arrive at the expression 

 
1

1 1 ( 1)!

k
k

m jl
tAt

kj
k j

te W e
j

λ
−

= =

=
−∑∑  

Again, complex conjugate terms in this expression can be combined to give a real expression for 
the matrix exponential, but the form given above is usually most useful. 
 
The last property we discuss is another “finite” expression for the matrix exponential in the time 
domain. It is rather less specific than the eigenvalue-of- A  representations, but is sometimes 
useful for theoretical purposes. 
 
Property 7  
There exist n  scalar functions 0 1( ) , , ( )nt tα α −…  such that, for all t , 

 
1

0
( )

n
At k

k
k

e t Aα
−

=

=∑  

Proof   
The Cayley-Hamilton theorem states that if  
 1

1 1 0det( ) n n
nI A a a aλ λ λ λ−
−− = + + + +  

then 
 1

1 1 0 0n n
nA a A a A a I−
−+ + + + =  

(“A square matrix satisfies its own characteristic equation.”) This means that nA  can be written 
as a linear combination of lower powers of A : 
 1

0 1 1
n n

nA a I a A a A −
−= − − − −  

Multiplying through by A , and replacing the nA  term on the right shows that 1nA +  can be written 
as a linear combination of the same lower powers of  A : 
 1 2 1

1 0 0 1 1 2 1( ) ( ) ( )n n
n n n nA a a I a a a A a a A+ −
− − − −= − − − − −  

Continuing this process shows that all higher powers of A  can be written as linear combinations 
of 1, , , nI A A −… . Using this result in the series 

 
2

2

1! 2! !

k
At kt t te I A A A

k
= + + + + +  

allows the series to be written in terms of the first 1n −  powers of A . By absolute convergence, 
we can gather together all the terms involving I , all the terms involving A , and so on. The 
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coefficients of these powers of A   are (admittedly messy) scalar series in t  that define the 
functions 0 1( ), , ( )nt tα α −… .  
 
It is worthwhile to state one non-property. Namely, for 2n ≥  it is never the case that the matrix 
exponential is formed by exponentiating each entry of A . 
 
Solution for Nonzero Input Signal 
 
For a linear state equation (again temporarily ignoring the output equation) 
 ( ) ( ) ( ) , (0) ox t Ax t Bu t x x= + =  
with an input signal ( ), 0u t t ≥ , that is, for example, piecewise continuous, there are a number of 
approaches to deriving the solution, including integrating factor methods. However, we take a 
shortcut and simply guess a solution and verify. 
 
Theorem   
Given an input signal and an initial state, the complete solution to the state equation is 

 ( )

0

( ) ( ) , 0
t

At A t
ox t e x e Bu d tτ τ τ−= + ≥∫  

Furthermore, this solution is the unique solution. 
 
Proof   
Clearly this solution formula satisfies the initial condition, and the formula can be rewritten as 

 
0

( ) ( ) , 0
t

At At A
ox t e x e e Bu d tτ τ τ−= + ≥∫  

to simplify differentiation. Using the product rule and a fundamental theorem of calculus, 

 

0

0

( ) ( ) ( )

( ) ( )

( ) ( )

t
At At A At At

o

t
At At A

o

x t Ae x Ae e Bu d e e Bu t

A e x e e Bu d Bu t

Ax t Bu t

τ

τ

τ τ

τ τ

− −

−

= + +

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
= +

∫

∫  

The following contradiction argument shows that for a given ox  and a given input signal 
( ), 0,u t t ≥  this solution is unique. Indeed, if there are two solutions, the difference between the 

solutions satisfies the zero-input state equation with zero initial state, and uniqueness of solutions 
there implies that the difference is identically zero.  
 
When an output equation is in play, the unique solution for the output signal is 

 ( )

0

( ) ( ) ( ), 0
t

At A t
oy t Ce x Ce Bu d Du t tτ τ τ−= + + ≥∫  

Of course, another way of writing this is to use the sifting property of the unit-impulse function to 
build the “ D -term” into the integrand: 

 ( )( )

0

( ) ( ) ( ) , 0
t

At A t
oy t Ce x Ce B D t u d tτ δ τ τ τ−= + + − ≥∫  

Here it is customary to call 
 ( ) ( )Ath t Ce B D tδ= +  
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the unit-impulse response of the state equation, though this is literally the (zero-state) response to 
a unit-impulse input only if one is willing to skirt the technical issue of interpreting the 
calculation 

 
0

( ) ( ) ( )
t

t d tδ τ δ τ τ δ− =∫  

In any case, the component of the response due to the input signal can be recognized as the 
familiar convolution of the unit-impulse response and the input signal. 
 
Using either representation, the complete solution for the output signal is a sum of a term due to 
the initial state, called the zero-input term, and a term or terms due to the input signal, called the 
zero-state term(s). 
 
Remark 
Clearly linear state equations are blessed! No matter how large n  might be, or what the 
coefficient matrices might be, for any given initial state and (continuous) input signal there exists 
a unique solution for ( )x t  and, of course, ( )y t . Note that this does not hold for the linear 
algebraic equation Ax b= , even for 1n = .  
 
These various response formulas also can be expressed in terms of Laplace transforms, either by 
solving the differential equation by transform methods, or by transforming the time-domain 
solution formulas. Taking the latter approach, and using the standard capital letter notation for 
transforms, the linearity and convolution properties of the Laplace transform yield 
 1 1( ) ( ) ( ) ( )oY s C sI A x C sI A B D U s− −⎡ ⎤= − + − +⎣ ⎦  

Again, it is customary to call 
 1( ) ( )H s C sI A B D−= − +  
the transfer function of the state equation. It is the Laplace transform of the unit-impulse 
response, and, from another viewpoint, the ratio of the Laplace transforms of the output signal to 
the input signal under the assumption of zero initial state. (Of course, for vector input and/or 
output signals, this should be rephrased since the transfer function will be a matrix of proper 
rational functions.) 
 
Finally we confirm that the solutions for the output of two state equations related by a state-
variable change are the same. That is, given an input ( )u t  and initial state ox  for 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

the solution is the same as the solution of  
1 1( ) ( ) ( )

( ) ( ) ( )
z t P APz t P Bu t
y t CPz t Du t

− −= +
= +

 

to the input ( )u t  and initial state 1(0) oz P x−= . Indeed, using Property 5, 

 

1 1 1

0

1 1 1 1

0

0

(0) ( ) ( )

( ) ( )

( ) ( )

t
P APt P AP

t
At A

o

t
At A

o

CPe z CPe P Bu t d Du t

CPP e PP x CPP e PP Bu t d Du t

Ce x Ce Bu t d Du t

τ

τ

τ

τ τ

τ τ

τ τ

− − −

− − − −

+ − +

= + − +

= + − +

∫

∫

∫
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Exercises 
 
1.  For the linear state equation with 

 [ ]1 0 1/ 2
, , 6 0

6 2 1
A B C

−⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

use a change of state variable to compute a diagonal form state equation. 
 
2.  For linear state equation 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

consider a time-variable change of variables of the form 

 1( ) ( ) ( )z t P t x t−=  
What assumptions are needed on ( )P t ? What is the form of the state equation in ( )z t ?  
 

3. Following Problem 2, investigate the case where ( ) AtP t e= , for the state equation 
( ) ( )x t Ax t= . Comment on any special features of the resulting state equation in the new state 

variable. 
 
4. Use the diagonal form method to compute Ate  for 

 
0 1
1 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
5. Use the Laplace transform method to compute Ate  for 

 
0 1
1 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
6.  Show that if A is invertible, then 

 1

0
( )

t
A Ate d A e Iσ σ −= −∫  

7.  Prove the transposition property 

 ( )T TA t Ate e=  

 
8.  If A  and F  are n n×  matrices, show that 

 ( ) ( ) ( )

0

t
A F t At A t A Fe e e Fe dσ σ σ+ − +− = ∫  

 
9.  Show that under appropriate assumptions on the n n×  matrix function ( )F t , 
 ( ) ( )( )F t F td

dt e F t e=  
 
10. For the time-invariant, n-dimensional, nonlinear state equation 
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 ( ) ( ) ( ) ( ) ( ) , (0) 0x t Ax t Dx t u t Bu t x= + + =  
show that under appropriate additional hypotheses a solution is 

 
( )

( )

0

( ) ( )

t

t D u d
A tx t e e Bu dσ

τ τ
σ σ σ−

∫
= ∫  

 
11.  Use a power series approach to find a solution ( )X t  for the n n×  matrix differential 
equation 
 ( ) ( ) ( ) , (0) oX t AX t X t F X X= + =  
 
12.  Using the result of Problem 11, what condition on oX  will guarantee that he n n×  matrix 
differential equation 
 
 ( ) ( ) ( ) , (0) oX t AX t X t A X X= − =  
has a constant solution? 
 
13.  By direct differentiation of  

 ( )

0
( ) ( )

t
At A t

ox t e x e Bu dσ σ σ−= + ∫  

show that 
 ( ) ( ) ( ) , (0) ox t Ax t Bu t x x= + =  
 
14.  Is there a  matrix A such that  

 
0

t
At

t

e t
e

e−
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 

 
15. If  , pλ  is an eigenvalue-eigenvector pair for A , determine a simplified form for the solution 
of  
 ( ) ( ) , (0)x t Ax t x p= =  
If λ , and thus p , are complex, show how to interpret your result as a simplified form for the 
solution to a real initial state. 
 
16. Show that a solution of the n n×  matrix differential equation 
 ( ) ( ) ( ) , (0) oX t AX t X t F X X= + =  

is ( ) At Ft
oX t e X e= . 

 
17.  Suppose that for given   n x n matrices A and M there exists a constant n x n matrix Q that 
satisfies 

 TA Q QA M+ = −  
Show that for all 0t ≥ , 

 
0

T Tt
A t At A AQ e Qe e Me dσ σ σ= + ∫  
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3. Response Properties  
 
LTI Properties of the Response 
 
We begin by confirming linearity and time invariance properties of the response of a linear state 
equation. Linearity can be approached in terms of either the time domain or transform-domain 
solution formulas, and here the time domain is chosen: 

 ( )

0

( ) ( ) ( )
t

At A t
oy t Ce x Ce Bu d Du tτ τ τ−= + +∫  

 
It is obvious that the zero-input response is linear in the initial state, that is, superposition holds. If 

( )ay t  and ( )by t  are the zero-input responses to oax  and obx , respectively, then for any real α  
the zero-input response to oa obx xα+  is ( ) ( ) , 0a by t y t tα+ ≥ . Similarly, if ( )ay t  and ( )by t  are 
the zero-state responses to input signals ( )au t  and ( )bu t , then the zero-state response to the input 
signal ( ) ( )a bu t u tα+  is ( ) ( ) , 0a by t y t tα+ ≥ . (These properties of course hold also for the state 
response, ( )x t . 
 
The time-invariance property of the zero-input response is a bit more subtle. If the initial state is 
postulated at some time 0ot > , the solution of the zero-input state equation 
 ( ) ( ) , ( )o ox t Ax t x t x= =  
is 
 ( )( ) ,oA t t

o ox t e x t t−= ≥  
as is readily verified. Thus the response to shifting the initial time to ot  is a shift of the response 
by ot , and this applies as well to the (zero-input) output signal,  
 ( ) At

oy t Ce x=  
 
If ( )ay t  is the zero-state response to the input signal ( )au t , for any ot t> consider the input signal 
 ( ) ( ) ( )b a o step ou t u t t u t t= − −  

where the unit-step function is used to emphasize that ( )bu t  is zero for 0 ot t≤ < . (Also, we could 
write ( ) ( )a stepu t u t  to emphasize that ( ) 0au t =  for 0t < .) To conclude time invariance, we must 

show that the zero-state response to ( )bu t  is given by  
 ( ) ( ) ,b a o oy t y t t t t= − ≥  
Indeed, for ot t≥  , 

 

( )

0

( )

0

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
o

t
A t

b b b

t
A t

a o step o a o step o

t
A t

a o a o step o
t

y t Ce Bu d Du t

Ce Bu t u t d Du t t u t t

Ce Bu t d Du t t u t t

τ

τ

τ

τ τ

τ τ τ

τ τ

−

−

−

= +

= − − + − −

= − + − −

∫

∫

∫

 

Changing the variable of integration from τ  to otσ τ= −  gives 
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( )

0

( ) ( ) ( ) ( )

( )

o

o

t t
A t t

b a a o step o

a o

y t Ce Bu d Du t t u t t

y t t

τ σ σ
−

− −= + − −

= −

∫  

A completely similar argument applies to the (zero-state) state response, ( )x t . 
 
Response Properties Associated with  Poles and Zeros 
 
Suppose ( )G s  is a proper rational function - a ratio of polynomials in s  with the degree of the 
numerator polynomial no greater than the degree of the denominator polynomial. Assume also 
that the numerator and denominator polynomials have no roots in common, that is, they are 
relatively prime. A root of the numerator polynomial is called a zero of  ( )G s  and a root of the 
denominator polynomial is called a pole of ( )G s . The multiplicity of a zero or pole os  is the 
multiplicity of os  as a root of the numerator or denominator polynomial, as appropriate. 
The terms pole and zero are graphic in the sense that if os  is a zero of ( )G s , then ( ) 0oG s = , and 
if os  is a pole of ( )G s , then | ( ) |oG s = ∞ . A slight subtlety has to do with the relatively-prime 
assumption. 
 
Example   
For  

 
2

2

1( )
( 1)
sG s

s s
−

=
+

 

the poles are 0, 1− , both of multiplicity one, and 1 is a zero, of multiplicity one. 
 
Remark 
In the sequel we will sometimes write a transfer function with equal numerator and denominator 
degrees as a strictly-proper rational function plus a constant, for example, 
 ( ) ( ) , 0p spG s G s D D= + ≠  
This is easily accomplished by dividing the denominator polynomial of ( )pG s  into the numerator 
polynomial for one step. To be terribly explicit, given a transfer function  ( )pG s  with equal-
degree- n  numerator and denominator polynomials, written with the denominator a monic 
polynomial, the expression 

 
1 1

1 0 1 1 0 0
1 1

1 0 1 0

( ) ( )n n n
n n n

n n n n
n n

c s c Ds c a D s c a DD
s a s a s a s a

− −
− − −

− −
− −

+ + + + + + +
+ =

+ + + + + +
 

permits the identification of 0 1, , na a −… from the denominator of ( )pG s , D  from the coefficient 

of ns  in the numerator, and then the easy calculation of 0 1, , nc c −…  to define ( )spG s . In any case, 

it is important to note, and easy to verify, that the poles of  ( )pG s  are identical to the poles of 
( )spG s . However, the zeros of ( )pG s  and ( )spG s  differ.  

 
Poles and zeros of the transfer function corresponding to a linear state equation  
 1( ) ( )G s C sI A B D−= − +  
can be used to characterize a number of properties of the state equation. In particular there are 
exponential response properties associated to each. However, another subtlety that arises is that 
poles of such a transfer function must be eigenvalues of A , as application of the adjoint-over-
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determinant formula clearly shows, but eigenvalues of A  need not be poles of the transfer 
function. And while zeros cannot also be poles, zeros can be eigenvalues of A . 
 
Example   
For the state equation with 

[ ]1 0 1
, , 1 0

0 1 0
A B C

−⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

a quick calculation shows that 1−  is the only pole of the corresponding transfer function, but the 
eigenvalues of A  are 1,1− . 
 
Theorem   
Suppose that os  is a pole of the transfer function ( )G s  of the linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

Then there exists a (possibly complex) nonzero initial state ox  and a (possibly complex) number 

oy  such that the zero-input output response of the state equation is 
 , 0os tAt

o oCe x y e t= ≥  
 
Proof   
Let  ox  be an eigenvector corresponding to the eigenvalue os  of A . Then 

 

2
2

2
2

2
2

2
2

( )
1! 2!

1! 2!

1! 2!

(1 )
1! 2!

o

At
o o

o o o

o o o o o

o o o

s t
o

t te x I A A x

t tx Ax A x

t tx s x s x

t ts s x

e x

= + + +

= + + +

= + + +

= + + +

=

 

Thus 
 , 0os tAt

o oCe x Cx e t= ≥  
and we can set o oy Cx=  
 
Remark   
In the case where os  is complex, so that ox  is complex, this theorem implies a real (actual) 
response property as follows. Writing os  in rectangular form as o o os jσ ω= + , we have that  
 ( ) (cos( ) sin( ))o o o os t j t t

o oe e e t j tσ ω σ ω ω+= = +  
Writing ox  in rectangular form also, we have that  
 (Re{ } Im{ }) (Re{ } Im{ }) (cos( ) sin( )) , 0otAt

o o o o o oCe x j x C x j x e t j t tσ ω ω+ = + + ≥  
Expanding both sides and equating the real parts, and then the imaginary parts, gives the two real 
expressions for the zero-input responses to the initial states Re{ }ox  and Im{ }ox  : 
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Re{ } Re{ } cos( ) Im{ } sin( ) , 0

Im{ } Re{ } sin( ) Im{ } cos( ) , 0

o o

o o

t tAt
o o o o o

t tAt
o o o o o

Ce x C x e t C x e t t

Ce x C x e t C x e t t

σ σ

σ σ

ω ω

ω ω

= − ≥

= + ≥
 

The additional complication might be viewed as sufficient reason to accept the complex formula. 
 
In the following result concerning zeros, the assumption that the zero is not an eigenvalue of A  
can be removed by making use of notions that arise in the sequel. 
 
Theorem   
Suppose that os  is a zero of the transfer function ( )G s  of the linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

but that os  is not an eigenvalue of A . Then given a (possibly complex) number ou  there exists a 
(possibly complex) initial state ox  such that the complete output response of the state equation to 

(0) ox x=  and the input signal ( ) os t
ou t u e=  is identically zero. that is 

 ( )

0

0 , 0o o

t
s s tAt A t

o o oCe x Ce Bu e d Du e tττ τ−+ + = ≥∫  

 
Proof    
Phrasing matters in terms of Laplace transforms, we need to find ox  such that 

 1 1( ) ( ) ( ) 0o o
o

o o

u uY s C sI A x C sI A B D
s s s s

− −= − + − + =
− −

 

Choosing  
 1( )o o ox s I A Bu−= −  
where the indicated inverse exists since os  is not an eigenvalue of A , we can write ( )Y s  as 

 1 1 1 1( ) [( ) ( ) ( ) ] o
o o

o o

uY s C sI A s I A sI A Bu D
s s s s

− − −= − − + − +
− −

 

However, it is easy to verify, by multiplying on the left by ( )sI A− , invertible for all but at most 
n  values of the complex variable s , and on the right by ( )os I A− , invertible by assumption, that 

 1 1 1 11 1( ) ( ) ( ) ( )o o
o o

sI A s I A sI A s I A
s s s s

− − − −− − + − = −
− −

 

and thus 

 

1 1( ) ( )

( ) 0

o
o o

o o

o
o

o

uY s C s I A Bu D
s s s s

uG s
s s

−= − +
− −

= =
−

 

 
Steady-State Frequency Response Properties 
 
Given the response ( )y t  of an LTI system to an initial state and input signal, the corresponding 
steady-state response ( )ssy t  is that function of time satisfying the following condition. Given any 

0ε >  there exists a 0T >  such that 
 | ( ) ( ) | ,ssy t y t for t Tε− < ≥  
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If ( )ssy t  is a constant, then it is often called the final value of the response. However, ( )ssy t  need 
not be a constant, and also it need not be a bounded function. 
 
Example   
Consider the scalar state equation 

 
( ) ( ) ( )
( ) ( )

x t x t u t
y t x t

= +
=

 

with (0) 0x = . With the input signal  
 ( ) 2 tu t e−=  
the Laplace transform of the response is 

 2 1 1( )
( 1)( 1) 1 1

Y s
s s s s

= = −
+ − − +

 

and the steady-state response is 
 ( ) t

ssy t e=  
If the input signal is ( ) 2 1, 0,tu t e t−= − ≥ which has Laplace transform  

 1( )
( 1)
sU s

s s
−

=
+

 

then the final value of the response is 
 ( ) 1ssy t =  
 
 
Of particular importance is the following result that deals with the steady-state response to 
sinusoidal input signals (under an added condition on the state equation that will be developed as 
a stability property in the sequel). 
 
Theorem   
Suppose the LTI state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

is such that all eigenvalues of A  have negative real parts. Then for any initial state ox  and an 
input signal  
 ( ) sin( ) , 0o ou t u t tω= ≥  
where 0oω ≠ , the steady-state response is 
 ( ) | ( ) |sin[ ( )]ss o o o oy t u G j t G jω ω ω= +∠  
where 
 1( ) ( )G s C sI A B D−= − +  
 
Proof   
The strategy is to compute the Laplace transform of the response, and then ignore those terms in 
the partial fraction expansion that correspond to components of the response that decay to zero. It 
is convenient to write the input signal in terms of its complex exponential components, 

 ( )
2 2

o oj t j to ou uu t e e
j j

ω ω−= −  

and the Laplace transform 
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 1 1( )
2 2

o o

o o

u uU s
j s j j s jω ω

= −
− +

 

Then, given any initial state, the Laplace transform of the response is 

 

1 1 11 1( ) ( ) ( ) ( )
2 2

1 1
2 2

o o
o

o o

o o

o o

u uY s C sI A x C sI A B C sI A B
j s j j s j

u uD D
j s j j s j

ω ω

ω ω

− − −= − + − − −
− +

+ −
− +

 

All poles of the strictly-proper rational functions 1( ) oC sI A x−−  and 1( )C sI A B−−  have negative 
real parts, because of the assumption on the eigenvalues of A  . Therefore the partial fraction 
expansion terms corresponding to these poles can be ignored since they result in time functions 
that decay (exponentially) to zero. That is, we need only retain the partial fraction expansion 
terms corresponding to the poles at ojω±  for the steady-state response. This gives 

 

1 11 1( ) ( ) ( )
2 2

1 1
2 2

o o

o o
ss s j s j

o o

o o

o o

u uY s C sI A B C sI A B
j s j j s j

u uD D
j s j j s j

ω ωω ω

ω ω

− −

= =−
= − − −

− +

+ −
− +

 

Thus we can write 

 ( ) ( ) ( )
2 2

o oj t j to o
ss o o

u uy t G j e G j e
j j

ω ωω ω −= − −  

Expressing ( )oG jω  in polar form, 
 ( )( ) | ( ) | oj G j

o oG j G j e ωω ω ∠=  
 
 and noting that since ( )G s  is a real-coefficient, proper rational function, 
 ( )( ) ( ) | ( ) | oj G j

o o oG j G j G j e ωω ω ω − ∠∗ = − =  
we have 

 

[ ( )] [ ( )]

( ) | ( ) |
2

| ( ) |sin[ ( )]

o o o oj t G j j t G j

ss o o

o o o

e ey t u G j
j

G j t G j

ω ω ω ω

ω

ω ω ω

+∠ − +∠−
=

= +∠
 

 
 
Exercises 
 
1.  The input-output behavior (zero-state output response), defined for 0t ≥ , for various systems 
is given below. Determine which systems have linear input-output behavior and which have time-
invariant input-output behavior. 

(a)  
0

( ) ( )
t

ty t e u dσ σ σ+= ∫                    (b)  
0

( ) 1 ( )
t

ty t e u dσ σ σ−= + ∫  

(c)  
1/ 3

3

0
( ) ( )

t
y t u dσ σ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫  

 
2.  For the linear state equation 
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( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

and positive real numbers 1 2,λ λ  , suppose ( )y t  is the response for 1(0) 0, ( ) tx u t e λ−= = . 
Show that 

 2
1 2

11
2

0
( ) ( )ty t e dt C I A Bλ

λ λ λ
∞

− −
+

= −∫  

Are any additional assumptions needed? (Hint: A helpful notation is to define 

 , 0( )
0, 0

AtCe B th t
t

⎧⎪ ≥= ⎨
<⎪⎩

 

(the unit-impulse response) and compute ( )y t  in terms of this.) 
 
3.  Show that two linear state equations that are related by an invertible change of state variables 
have the same transfer function. 
 
4.  Consider a linear state equation 

( ) ( ) ( ), (0)
( ) ( )

ox t Ax t Bu t x x
y t Cx t

= + =

=
 

with constant input ( ) , 0ou t u t= ≥ . Under suitable assumptions show that the steady-state 
response is a constant, and derive a convenient formula for that constant. 
 
5.  For the linear state equation  

[ ]

0 1 0
( ) ( ) ( )

16 8 1

( ) 3 1 ( )

x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
= −

 

compute the steady-state response to the input signals ( 0t ≥ ) 

(a) ( ) ( )u t tδ=               (b) ( ) 1u t =      (c) 3( ) tu t e−=         

(d)  3( ) tu t e=         (e) ( ) 4sin(2 )u t t=  
 
6. For the linear state equation 

 

[ ]

0 1 0 0
( ) 0 0 1 ( ) 0 ( ), (0) 0

0 6 5 1

( ) 1 0 1 ( )

x t x t u t x

y t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

= −

 

compute the steady-state response, if it exists, for the inputs  ( 0t ≥ ) 

(a) ( ) ( )u t tδ=         (b) ( ) 1u t =        (c) ( ) tu t e−=        (d) ( ) tu t e=        (e) ( ) 4 sin(2 )u t t=  
(For (e) you need not compute the constants, simply give the form of the steady-state response.) 
 
7. Consider the two electrical circuits with input voltages and output voltages as shown below. 
Compute the transfer functions 1 1( ) / ( )V s U s  and 2 2( ) / ( )V s U s . Then compute the transfer 
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function of the cascade connection of the circuits ( 2 1( ) ( )u t y t=  ). Is it the product of the 
subsystem transfer functions? 
 

 
 

8.  Suppose A is n n×  and 1
1 0det( ) n n

nsI A s a s a−
−− = + + + . 

Verify the formula 

 1 2 2 1
1 1 1adj( ) ( ) ( )n n n n

n nsI A s a s a I s a A A− − − −
− −− = + + + + + + +  

and use it to show that there exist strictly-proper rational functions of s such that 

 1 1
0 1 1( ) ( ) ( ) ( ) n

nsI A s I s A s Aα α α− −
−− = + + +  

 
9.  The relative degree of a linear state equation 

( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

is the degree of the denominator polynomial of 1( ) ( )G s C sI A B−= −  minus the degree of the 
numerator polynomial. Using Exercise 3.8, show that the state equation has relative degree κ  if 
and only if 

 1 0 and 0, 0,1, , 2kCA B CA B kκ κ− ≠ = = −…  
 
10.  A transfer function ( )H s  is such that the (zero-state) response to cos(2 )t  has final value 
zero, and the (zerp-state) response to a unit-step input is unbounded. What is a possible ( )H s ? 
 
11.  Consider the linear state equation 

 
( ) ( ) ( ), (0)
( ) ( )

ox t Ax t Bu t x x
y t Cx t

= + =

=
 

Is there an initial state ox  such that the response to (0) ox x= , ( ) ( )u t tδ=  (the unit impulse) is 
( ) 0y t = , 0t ≥ ? 

 
12.  For the linear state equation 

 

[ ]

0 1 0 0
( ) 0 0 1 ( ) 0 ( )

0 0 1 1

( ) 1 2 1 ( )

x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

=

 

what are the eigenvalues of A  ? What are the zeros and poles of the transfer function? 
 
13.  Suppose the zeros-state output response of the linear state equation 
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( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

to a unit-step input is  
 2( ) 3 , 0t ty t e t e t− −= + + ≥  
What is the zero-state output response to the input signal shown below? 

 
 14.  Suppose the linear state equation 
 ( ) ( ) ( )x t Ax t Bu t= +  
is such that all eigenvalues of A   have negative real parts, and suppose ( )u t  is continuous and 
T -periodic for 0t ≥ . That is, 0T >  is such that ( ) ( )u t T u t+ =  for 0t ≥ . Show that if 

 
0

(0) ( )Ax e Bu dσ σ σ−

−∞

= ∫  

then the complete solution is T -periodic and given by 

 ( )( ) ( ) , 0
t

A tx t e Bu d tσ σ σ−

−∞

= ≥∫  

Show that the complete solution for nay other initial state converges to this periodic solution as 
t →∞ . 
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4. Stability Concepts 
 
We introduce notions that describe boundedness and asymptotic behavior of the response of a 
linear state equation. Since there are two components of the response, the zero-input and zero-
state components, there are two categories of stability concepts. It turns out that it is useful to 
focus on the zero-input state response, and the zero-state output response. 
 
Asymptotic Stability 
 
Definition   
The linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

is called asymptotically stable if for any initial state the zero-input state response satisfies 
 lim ( ) 0t x t→∞ =  
 
Theorem   
The state equation (1) is asymptotically stable if and only if all eigenvalues of the coefficient 
matrix A  have negative real parts. 
 
Proof   
For any initial state ox , the zero-input state response is 
 ( ) , 0At

ox t e x t= ≥  
If 1, , lλ λ…  are the distinct eigenvalues of A  with corresponding multiplicities 1, , 1lm m ≥… , then 
we can write 

 
1

1 1 ( 1)!

k
k

m jl
tAt

kj
k j

te W e
j

λ
−

= =

=
−∑∑  

If the eigenvalues have negative real parts, using L’Hospital’s rule it is easy to show that each 
term in this finite summation goes to zero as t →∞  , and it follows that the state equation is 
asymptotically stable. 
Now suppose that (1) is asymptotically stable. To proceed by contradiction, suppose that there is 
an eigenvalue 1λ  of A  with nonnegative real part. That is, 1 1 1jλ σ ω= + , with 1 0σ ≥ . Let p  be 
an associated eigenvector, and write p  in the (vector) rectangular form 
 R Ip p jp= +  
Then, from Exercise 2.15, we have 
 1 1 1t t j tAte p e p e e pλ σ ω= =  
and this does not approach zero as t →∞  since 0p ≠ , 1j te ω  is never zero, and 1 0σ ≥ . This 
completes the proof by contradiction if 1λ  is real, for then ox p=  is a real initial state for which 
the zero-input state response does not go to zero. If 1λ  is complex, so that p  is complex, writing 
 At At At

R Ie p e p je p= +  
makes it clear that at least one of the real initial states o Rx p=  or o Ix p=  yields a zero-input state 
response that does not go to zero. Again, this contradicts the assumption of asymptotic stability. 
 
 
It is convenient to characterize the eigenvalue condition for asymptotic stability in terms of a 
linear-algebraic equation involving symmetric, sign-definite matrices called the linear Liapunov 
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equation. The following basic result leads to connections among a number of basic properties in 
the sequel. 
 
Theorem  
(a) Given n n×  A , if Q  and M  are symmetric, positive-definite matrices such that  
 TQA A Q M+ = −  (2) 
then all eigenvalues of A  have negative real parts.  
(b) If all eigenvalues of A  have negative real parts, then for each symmetric, n n× matrix M  
there exists a unique solution of (2) given by 

 
0

TA t AtQ e Me dt
∞

= ∫  (3) 

Furthermore, if M  is positive definite, then Q  is positive definite. 
 
Proof   
(a) Suppose λ  is an eigenvalue of A , with associated eigenvector p , 
 Ap pλ=  
Then 
 H T Hp A pλ=  
where H  indicates conjugate transpose. If Q  and M  are symmetric, positive-definite matrices 
such that (2) is satisfied, then 
 H H T Hp QAp p A Qp p Mp+ = −  
This simplifies to 
 ( ) H Hp Qp p Mpλ λ+ = −  
and further to 
 2Re{ } H Hp Qp p Mpλ = −  
Invoking the positive definiteness of Q  and M , this implies Re{ } 0λ < . 

(b) If all eigenvalues of A  have negative real parts, then all entries of Ate  and 
TA te  go to zero 

exponentially as t →∞ . Therefore every scalar entry in the integrand (3) similarly approaches 
zero, so the integral converges and Q  is well defined. Further, Q  is symmetric, and to show that 
Q  is a solution of (2) we calculate 

 

0 0

0
0

T T

T T

T A t At T A t At

A t At A t At

QA A Q e Me Adt A e Me dt

d e Me dt e Me
dt
M

∞ ∞

∞ ∞

+ = +

⎡ ⎤= =⎣ ⎦

= −

∫ ∫

∫  

To show this solution is unique, suppose Q  is another solution. Then 
 ( ) ( ) 0TQ Q A A Q Q− + − =  
This gives 
 ( ) ( ) 0 , 0

T TA t At A t T Ate Q Q Ae e A Q Q e t− + − = ≥  
that is 

 ( ) 0 , 0
TA t Atd e Q Q e t

dt
⎡ ⎤− = ≥⎣ ⎦  

Integrating both sides, from zero to infinity, yields 
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0

0 ( ) ( )
TA t Ate Q Q e Q Q

∞
⎡ ⎤= − = − −⎣ ⎦  

that is, Q Q= . Finally, suppose M  is positive definite. Then Q  given by (3) is symmetric, and 
for any nonzero, 1n×  x , 

 
0

0
TT T A t Atx Qx x e Me x dt

∞

= >∫  

since the integrand is a positive scalar function of t . Thus Q  is positive definite.  
 
Uniform Bounded-Input, Bounded-Output Stability 
 
 For the zero-state response, the most useful concept involves boundedness of the output signal for 
bounded input signals. However, there is a subtlety that makes it convenient to use a concept that 
is a bit more complicated than ‘bounded inputs yield bounded outputs.’ We use the standard 
notion of supremum, where 
 

0
sup | ( ) |
t

u tυ
≥

=  

is the smallest constant such that | ( ) |u t υ≤  for all 0t ≥ . If no such constant exists, we write 
 

0
sup | ( ) |
t

u t
≥

= ∞  

(Notice that, for example, ( ) 1 , 0,tu t e t−= − ≥  attains no maximum value, but its supremum is 
unity.) 
 
Definition   
The state equation is called uniformly bounded-input, bounded-output stable if there exists a 
constant η  such that for any input signal ( )u t  the zero-state output response satisfies 
 

0 0
sup | ( ) | sup | ( ) |
t t

y t u tη
≥ ≥

≤  

 
Notice that the supremum of the zero-state output does not depend on the `waveshape’ of the 
input signal, only the supremum of the input, as emphasized by the adjective uniformly. 
 
Theorem   
The state equation is uniformly bounded-input, bounded-output stable if and only if AtCe B  is 
absolutely integrable, that is, the integral 

 
0

| |AtCe B dt
∞

∫  

is finite.  
 
Proof    
Suppose first that there is a constant ρ  such that 

 
0

| |AtCe B dt ρ
∞

=∫  

Then for any input signal ( )u t , the zero-state output response satisfies 
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 0

0

| ( ) | | ( ) ( ) |

| || ( ) | | | | ( ) | , 0

t
A

t
A

y t Ce Bu t d Du t

Ce B u t d D u t t

τ

τ

τ τ

τ τ

= − +

≤ − + ≥

∫

∫
 

In each term we can replace the input signal by its supremum to obtain the inequality 

 
( )

00

0

| ( ) | | | | | sup | ( ) |

| | sup | ( ) | , 0

t
A

t

t

y t Ce B d D u t

D u t t

τ τ

ρ

≥

≥

⎛ ⎞
≤ +⎜ ⎟
⎝ ⎠

≤ + ≥

∫
 

This implies that  
 ( )

0 0
sup | ( ) | | | sup | ( ) |
t t

y t D u tρ
≥ ≥

≤ +  

and we have shown uniform bounded-input, bounded-output stability with | |Dη ρ= + . 
 
Next, suppose the state equation is uniformly bounded-input, bounded-output stable. Then, in 
particular, there exists a constant η  such that for any input signal satisfying 
 

0
sup | ( ) | 1
t

u t
≥

=  

the corresponding zero-state output response satisfies 
 

0
sup | ( ) |
t

y t η
≥

≤  

We assume that the absolute-integrability condition does not hold, that is, given any constant ρ  
there exists a time tρ  such that 

 
0

| |
t

AtCe B dt
ρ

ρ>∫  

In particular this implies that there exists a time 0tη >  such that 

 
0

| | | |
t

AtCe B dt D
η

η> +∫  

To obtain a contradiction, consider the input signal defined by 

 
1 , 0

( ) sgn[ ] 0 , 0
1, 0

A

A A

A

Ce B
u t Ce B Ce B

Ce B

τ

τ τ
η

τ

τ
⎧ >
⎪− = = =⎨
⎪− <⎩

 

for 0 tητ≤ ≤ . Then 

 ( ) | | , 0A ACe Bu t Ce B tτ τ
η ητ τ− = ≤ ≤  

and the zero-state output response to the input satisfies, at t tη= , 

 
0

( ) | | ( ) | | | |
t

Ay t Ce B d Du t D D
η

τ
η ητ η η= + > + − =∫  

This contradicts the assumption of uniform bounded-input, bounded-output stability.  
 
Input-output stability also can be phrased in terms of the transfer function of the system, the 
Laplace transform of the unit-impulse response.  
 
Theorem    
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The state equation is uniformly bounded-input, bounded-output stable if and only if all poles of 
the transfer function, 
 1( ) ( )G s C sI A B D−= − +  
have negative real parts. 
 
Proof   
We can assume 0D =  since the value of D  does not impact either the stability concept or the 
pole locations of the transfer function. If the stability property holds, then AtCe B  is absolutely 
integrable. Using a representation for the matrix exponential, we can write 

 
1

1 1 ( 1)!

k
k

m jl
tAt

kj
k j

tCe B CW B e
j

λ
−

= =

=
−∑∑  

and conclude from absolute integrability that, for each j , either jλ  has negative real part, or 
 0 , 1, ,kj kCW B j m= = …  
But then 

 1

1 1

1( )
( )

kml

kj
k j k

C sI A B CW B
s λ

−

= =

− =
−∑∑  

placed over a common denominator, has negative-real-part poles. 
On the other hand, if 1( )C sI A B−−  has negative-real-part poles, then partial fraction expansion 
shows that AtCe B  is a linear combination of ( t -multiplied) decaying exponentials, and therefore 
is absolutely integrable.  
 
Example   

 
 

The bucket system shown, with our standard assumptions and all parameters unity, and no outlet 
from the second bucket, is described by the linear state equation 

 

[ ]

1 0 1
( ) ( ) ( )

1 0 0

( ) 1 0 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=

 

Since det[ ] ( 1)I Aλ λ λ− = + , all eigenvalues of A  do not have negative real parts, and the state 
equation is not asymptotically stable. Of course this matches our cartoon intuition, for if 

2 (0) 0x ≠ , then 2 ( )x t  will never approach zero. However, 
 At tCe B e−=  
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and it is straightforward to check that the state equation is uniformly bounded-input, bounded-
output stable.  
 
Often the behavior illustrated by the example is called ‘hidden instability.’ This terminology is 
motivated by the fact that from an input-output viewpoint the system is well behaved, but internal 
(state) variables can grow without bound. If our example seems trivially transparent, less obvious 
examples of the non-equivalence of the two notions of stability abound (see Exercise 4.4). We 
will return to this issue in the sequel. 
 
Exercises 
 
1.  A linear state equation 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

 is called stable  (or, sometimes, marginally stable ) if the zero-input response ( )x t  to any initial 
state is a bounded function of time. That is, given (0)x  there is a finite k such that 

( ) , 0x t k t≤ ≥ . What is a simple sufficient condition on A for the state equation to be stable? 
 
2. Apply your sufficient condition for marginal stability from Exercise 4.1 to the examples 

(a) 
0 0
0 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                   (b) 
0 1
0 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

By computing the zero-input state responses, determine if the examples actually are marginally 
stable. 
 
3. Show by example that a (marginally) stable linear state equation, as defined in Exercise 4.1 
need not be uniformly bounded-input, bounded-output stable. 
 
4. Consider the circuit shown below 

 
where the circuit parameters satisfy , 0, 0L C R> ≥ . What further conditions on the parameters 
are needed for asymptotic stability? For uniform bounded-input, bounded-output stability? 
 
5. For what values of the parameter α  is the linear state equation below asymptotically stable? 
Uniformly bounded-input, bounded-output stable? 

 

[ ]

0 0
( ) ( ) ( )

2 1 1

( ) 1 0 ( )

x t x t u t

y t x t

α⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=
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6. Consider the state equation ( ) ( )x t AF x t= , where F  is a symmetric, positive-definite, n n×  

matrix and A  is an  n n×  matrix such that TA A+ is negative definite. Show that the state 
equation is asymptotically stable. (Hint: Begin by considering an eigenvalue/eigenvector pair for 

AF , form H Hp FAFp p FPλ= , and proceed.) 
 
7. Suppose ( ) ( )x t A x t=  is asymptotically stable. For what range of the scalar parameter α  is  
 ( ) ( )z t Az tα=  
asymptotically stable? 
 
 
8. For each system described below, determine if the system is uniformly bounded-input, 
bounded-output stable, and if not provide a bounded input that yields an  unbounded output. 

(a) 3 2

1( )
2

sG s
s s s

−
=

+ +
          (b)  2( )

( 3)( 9)
sG s

s s
=

+ +
      (c)  2( )

( 3)( 9)
sG s

s s
=

+ −
 

 

(d)  

[ ]

1 0 1
( ) ( ) ( )

0 1 1

( ) 1 0 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=

 

 
9.  Suppose an LTI system is described by an improper, rational transfer function with numerator 
degree 1n +  and denominator degree n . Show that such a system cannot be uniformly bounded-
input, bounded-output stable. 
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5.  Controllability and Observability 
 
The state equation representation exhibits the internal structure of a system, in particular the 
connections among the state variables and the input and output signals. If the input signal cannot 
influence some of the state variables, or the output signal is not influenced by some of the state 
variables, then we might well expect that the system has some unusual features. A particular 
example from Section 4 is the occurrence of uniformly bounded-input, bounded-output systems 
that are not asymptotically stable. This section introduces concepts that capture the relevant 
structural issues. 
 
Roughly speaking, a state equation is controllable if the input signal can independently influence 
each of the state variables, and a state equation is observable if the state variables independently 
influence the output signal. These concepts, when made precise, turn out to be fundamental. 
 
Controllability 
 
Definition   
The linear state equation  

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

is called controllable  if given any initial state ox  there exists a finite time ft  and a continuous 
input signal ( )u t  such that the zero-state state response satisfies ( ) 0fx t = . 
 
The controllability property certainly involves the dynamical behavior of the state equation, but 
the property can be characterized in purely algebraic terms. Indeed, we will develop three 
different algebraic criteria for controllability. 
 
Theorem   
The linear state equation (1) is controllable if and only if the controllability matrix 
 1nB AB A B−⎡ ⎤⎣ ⎦  (2) 

has rank n . 
  
Proof   
We first show that if the rank condition fails, then there exist initial states that cannot be driven to 
the origin in finite time. If the rank condition fails, the column vectors 1, , , nB AB A B−…  are 
linearly dependent, and there exists an ox  that cannot be written as a linear combination of these 
vectors. For the purpose of obtaining a contradiction, suppose that this ox  can be driven to the 
origin in finite time. That is, there exists a 0ft >  and a continuous input signal ( )u t  such that 

 ( )

0

0 ( ) ( )
f

f f

t
At A t

f ox t e x e Bu dτ τ τ−= = + ∫  

Rearranging this expression and using a finite representation for the matrix exponential 
(involving scalar functions 0 1( ), , ( )nt tα α −…  )gives 
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 0

1
1

0 0

( )

( 1) ( ) ( )

f

f

t
A

o

tn
k k

k
k

x e Bu d

u d A B

τ τ τ

α τ τ τ

−

−
+

−

= −

= −

∫

∑ ∫
 

But this shows that ox  can be written as a linear combination of 1, , , nB AB A B−… , with 
coefficients defined by the scalar integrals, which is a contradiction. Thus ox  cannot be driven to 
the origin in finite time, and the state equation is not controllable. 
 
Now suppose that the rank condition holds. First we show that this implies that the  n n×  matrix 

 
0

f
T

t
A T Ae BB e dτ τ τ− −∫  (3) 

is invertible for any 0ft > . Again the proof is by contradiction, and we first assume that there is 
a particular 0ft >  such that the matrix is not invertible. This implies that there exists a nonzero, 

1n×  vector x  such that 

 
0 0

0
f f

T T
t t

T A T A T A T Ax e BB e d x x e BB e x dτ τ τ ττ τ− − − −= =∫ ∫  

Since the integrand is the product of the two identical scalar functions T Ax e Bτ−  and 
TT AB e xτ− , we 

have that 
 0 , 0T A

fx e B tτ τ− = ≤ ≤  
Therefore, 

 

0

0 0

1
1 1 1 1

1 0 0

0

0

( 1) ( 1) 0

T A T

T A T A T

n
T A n T n A n T n

n

x e B x B

d x e B x Ae B x AB
d

d x e B x A e B x A B
d

τ

τ

τ τ

τ τ

τ τ

τ τ

τ

τ

−

=

− −

= =

−
− − − − − −

− = =

= =

= − = − =

= − = − =

 

which gives 
 0 , 0,1, , 1T kx A B k n= = −…  
Rearranging this data to write 
 1 1 0T T T n T nx B x AB x A B x B AB A B− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

makes the contradiction of the original full-rank assumption clear. 
Using the invertibility of (3), given ox  we choose any 0ft >  and the input signal 

 
1

0

( )
f

T T
t

T A t A T A
ou t B e e BB e d xτ τ τ

−

− − −
⎡ ⎤

= − ⎢ ⎥
⎢ ⎥⎣ ⎦
∫  

 
Then the complete state response at time ft  can be computed as follows: 
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( )

0
1

0 0

1

0 0

( ) ( )

0

f

f f

f f
T T

f f

f f
T T

f f

t
At A t

f o

t t
At At A T A A T A

o o

t t
At At A T A A T A

o o

x t e x e Bu d

e x e e BB e e BB e d d x

e x e e BB e d e BB e d x

σ

σ σ τ τ

σ σ τ τ

σ σ

τ σ

σ τ

−

−

− − − −

−

− − − −

= +

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
=

∫

∫ ∫

∫ ∫

 

Thus this input signal is as effective at demonstrating controllability as it is unmotivated! 
Furthermore, the transfer to the origin can be accomplished in any desired time 0ft > .  
 
Example   
The bucket system shown below, with all parameters unity, 

 
is described by the state equation 

 

[ ]

1 0 0
( ) ( ) ( )

1 1 1

( ) 0 1 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=

 

The clear intuition is that this system is not controllable, since the input cannot influence the first 
state variable, and indeed 

 [ ] 0 0
1

1 1
rank B AB rank

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

 

 
Of course our cartoon intuition is dangerous in that negative values for the input signal and the 
state variables are apparently impossible, and the notion of controllability is not applicable to 
restricted classes of input signals. One reasonable fix for this is to reformulate the example in 
terms of deviation variables about a constant, positive input and corresponding constant, positive 
values of the state variables and output signal, as illustrated in Section 1. Then negative values for 
the deviation variables are sensible, at least within some fixed range. However, since the 
coefficient matrices in the linear state equation do not change in the reformulation, we ignore this 
issue for our bucket cartoons.  
 
Example 
Consider the diagonal state equation 
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[ ]

1 1

2 2

1 2

0 0
0 0

( ) ( ) ( )
0 0 0
0 0

( ) ( ) ( )
n n

n

b
b

x t x t u t

b

y t c c c x t Du t

λ
λ

λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= +

 

Intuition demands that every entry of B  must be nonzero for controllability, but it is far from 
clear whether this condition is sufficient. Turning to the rank calculation, 

 

1
1 1 1 1 1

1
1 2 2 2 2 2

1

1
1 1 1

1
2 2 2

1

1
1

1

n

n
n

n
n n n n n

n

n

n
n n n

b b b
b b b

rank B AB A B rank

b b b

b
b

rank

b

λ λ
λ λ

λ λ

λ λ
λ λ

λ λ

−

−
−

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥= ⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 

The second of the two n n×  matrices in the product is a Vandermonde matrix, and is known to be 
invertible if and only if 1 , , nλ λ…  are distinct. Since the first matrix is diagonal, it follows that, 
under the distinct-eigenvalue assumption, a necessary and sufficient condition for controllability 
is that every entry of B  be nonzero. Notice that this indicates that controllability indeed is a 
structural property in the sense that the property holds regardless of what the (nonzero) values of 
the 'kb s  might be, or what the (distinct) values of the 'k sλ might be.  
 
Observability 
 
Definition   
The linear state equation (1) is called observable  if there exists a finite time ft  such that the 
initial state ox  is uniquely determined by the zero-input output response ( )y t  for 0 ft t≤ ≤ . 
 
The property of observability also can be characterized in purely algebraic terms, and again 
different algebraic criteria for observability are useful. 
 
Theorem   
The linear state equation (1) is observable if and only if the observability matrix 

 

1n

C
CA

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4) 

has rank n . 
  
Proof   
If the rank condition does not hold, we will show that the state equation is not observable by 
exhibiting a nonzero initial state ox  that yields the same zero-input output response as the zero 
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initial state. Since the rank condition does not hold, there exists an 1n× , nonzero vector ox  such 
that 

 

11

0

o

o
o

nn
o

CxC
CAxCA

x

CA xCA −−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

Then, using a finite representation for the matrix exponential, the zero-input response to this 
initial state is 

 
1

0
( ) ( ) 0 , 0

n
At k

o k o
k

y t Ce x t CA x tα
−

=

= = = ≥∑  

 
Thus, from the zero-input output response, ox  cannot be distinguished from the zero initial state. 
 
Now suppose that the rank condition holds. Just as in the proof of the controllability rank 
condition, we can show that this implies that the  n n×  matrix 

 
0

f
T

t
A T Ae C Ce dτ τ τ∫  

is invertible for any 0ft > . Leaving this as a modest exercise, for any initial state ox  the zero-
input output response is given by 
 ( ) , 0At

oy t Ce x t= ≥  

Multiplying both sides by 
TA t Te C  and integrating from 0  to any 0ft >  gives the linear algebraic 

equation 

 
0 0

( )
f f

T T
t t

A T A T A
oe C y d e C Ce d xτ τ ττ τ τ=∫ ∫  

Since the 1n×  left side is known, and the n n×  matrix on the right side is invertible, this shows 
that ox  is uniquely determined, regardless of the particular choice of ft .  
 
Example   
The bucket system shown below, with all parameters unity, 

 
is described by the state equation 
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[ ]

1 0 1
( ) ( ) ( )

1 1 0

( ) 1 0 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=

 

As expected, this system is not observable, since 

 
1 0

1
1 0

C
rank rank

CA
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

 
Additional Controllability and Observability Criteria 
 
Because of operational implications (steering the state with the input, or ascertaining the state 
from the output) and structural implications (connectedness of the input and output to the states) 
the concepts of controllability and observability are central to much of the material in the sequel. 
Alternate forms of the criteria for controllability and observability prove highly effective. 
Particular changes of state variables are required for the proofs, and underlying the arguments are 
the rather obvious facts that for two linear state equations related by a change of variables, 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

and 

 
1 1( ) ( ) ( )

( ) ( ) ( )
z t P APz t P Bu t
y t CPx t Du t

− −= +
= +

 

the respective controllability and observability matrices satisfy 

 
( )1 1 1 1 1 1 1 1

1

( ) ( )n n

n

rank P B P AP P B P AP P B rank P B AB A B

rank B AB A B

− − − − − − − −

−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦
 

and 

 
1

1 1 1 1

( )

( )n n n

CP C C
CP P AP CA CA

rank rank P rank

CP P AP CA CA

−

− − − −

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 

In other words, controllability and observability properties are preserved under a change of state 
variables. 
 
Lemma   
Suppose the linear state equation (1) is such that 
 1nrank B AB A B q−⎡ ⎤ =⎣ ⎦  

where 0 q n< < . (The cases 0q = and q n=  are trivial.) Then there exists an invertible, n n×  
matrix P  such that 

 11 12 11 1

22

,
0 0

F F G
F P AP G P B

F
− −⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (5)  

where 11F  is q q× , 1G  is 1q× , and 
 1

1 11 1 11 1
qrank G F G F G q−⎡ ⎤ =⎣ ⎦  

 
Proof   
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The claimed n n×  matrix P  can be constructed as follows. Select q  linearly independent 
vectors, 1 , , qp p…  from the set 1, , , nB AB A B−… . Note here that an application of the Cayley-

Hamilton theorem shows that any vector of the form kA B , regardless of the nonnegative integer 
k , can be written as a linear combination of 1 , , qp p… . Put another way, 

 1 1n n n krank B AB A B rank B A B A B− − +⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

for any nonnegative integer k . Next, select any n q−  additional vectors 1, ,q np p+ …   such that 

 1 1q q nP p p p p+⎡ ⎤= ⎣ ⎦  

is invertible ( n  linearly independent columns). Now the corresponding structure of G , in 
particular the bottom n q−  zero entries, can be ascertained by inspection of the relation PG B=  
as follows. Clearly B  is given by a linear combination of columns of P , with entries of G  as the 
coefficients. Since B  can be written as a linear combination of the first q  columns of P , the 
bottom n q−  entries of G  are zero. 
 
A similar argument confirms the lower-left zero partition of F , based on the relation 
 [ ]1 2 nPF AP Ap Ap Ap= =  
Since kA B , for any 0k ≥ , can be written as a linear combination of 1 , , qp p… , the vectors 

1 , , qAp Ap…  can be written as a linear combination of 1 , , qp p… . Thus the first q  columns of F  
must have zeros as the bottom n q−  entries.  
 
With the claimed structure of F  and G  confirmed, the completion of the proof is based on the 
partitioned product calculation 

 

1 1 1 1 1 1

1

1
1 11 1 11 1

0 0 0

n n

n

n

P B AB A B P B P AB P A B

G FG F G

G F G F G

− − − − − −

−

−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The rank of the product matrix remains q , and again from the note above we have 
 1 1

1 11 1 11 1 1 11 1 11 1
n qrank G F G F G rank G F G F G q− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

 
 
The change of state variables in this result can be interpreted by writing the new state variable in 
the partitioned form 

 1( )
( )

( )
c

nc

z t
P x t

z t
−⎡ ⎤

=⎢ ⎥
⎣ ⎦

 

where ( )cz t  is 1q× . Then the new state equation decomposes to 

 11 12 1

22

( ) ( ) ( ) ( )
( ) ( )

c c nc

nc nc

z t F z t F z t G u t
z t F z t

= + +
=

 

Clearly the second component, ( )ncz t  is not influenced by the input signal. However, it can be 
shown that the first subsystem is controllable, regardless of the extra term on the right side. 
(Exercise 5.3)  
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Our main use of the lemma is in proving the following characterization of controllability. 
 
Theorem   
The linear state equation (1) is controllable if and only if for every complex scalar λ  the only 
complex 1n×  vector p  that satisfies 
 , 0T T Tp A p p Bλ= =  (6) 
 
is 0p = . 
 
Proof   
We will establish equivalence of the negations, that is, (6) is satisfied for some 0p ≠  if and only 
if the state equation is not controllable. First, if 0p ≠  is such that (6) is satisfied for some λ , 
then 

 

1 1

1

0

T n T T T n

T T n T

p B AB A B p B p AB p A B

p B p B p Bλ λ

− −

−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

 

This shows that the n n×  controllability matrix is not full rank, and thus the state equation is not 
controllable.  
 
Next, suppose the linear state equation is not controllable. Then by the lemma there exists an 
invertible P  such that (5) holds, and 0 q n< < . (Again, the case 0q =  is trivial.) Suppose qp  is a 

left eigenvector for 22F  corresponding to the eigenvalue λ . That is, 
 22 , 0T T T

q q qp F p pλ= ≠  
Then with 
 1

10T T
q qp p P−

×⎡ ⎤= ⎣ ⎦  

we have that 0p ≠  and 

 

11
1 1

11 121 1
1 1

22

1
1

0 0 0
0

0 0
0

0

T T T
q q q q

T T T
q q q q

T T
q q

G
p B p P B p

F F
p A p P A p P

F

p P pλ λ

−
× ×

− −
× ×

−
×

⎡ ⎤⎡ ⎤ ⎡ ⎤= = =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

⎡ ⎤= =⎣ ⎦

 

and this completes the proof.  
 
A quick paraphrase of this result is that a state equation is controllable if and only if there is no 
left eigenvector of A  that is orthogonal to B . A  reformatting of the condition yields another 
useful form for the controllability criterion: 
 
Theorem   
The linear state equation (1) is controllable if and only if 
 [ ]rank sI A B n− =  (7) 
for every complex scalar s . 
 
Proof   
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Again we use the strategy of the previous proof and show that the rank condition fails if and only 
if the state equation is not controllable. But the state equation is not controllable if and only if 
there exist a scalar λ  and 1n×  vector 0p ≠  such that (6) holds. This can be rewritten as 
 [ ] 0Tp I A Bλ − =  
Since 0p ≠ , this is equivalent to 
 [ ]rank I A B nλ − <  
which of course is failure of the rank condition (7).  
 
To obtain alternate forms of the observability rank condition, there is a shortcut that bypasses the 
need to present proofs parallel to those above. Simply compare controllability and observability 
matrices, after obvious transpositions, to confirm that the linear state equation (1) is observable 
(respectively, controllable) if and only if the linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

T T

T

z t A z t C u t
y t B z t Du t

= +

= +
 (8) 

is controllable (respectively, observable). Thus the controllability results for (8) can be restated, 
after further transposition of coefficient matrices, as observability theorems for (1). 
 
Lemma 
Suppose the linear state equation (1) is such that  

 

1n

C
CA

rank l

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

where 0 l n< < . Then there exists an invertible, n n×  matrix Q  such that  

 [ ]111
1

21 22

0
, 0

F
F Q AQ H CQ H

F F
− ⎡ ⎤

= = = =⎢ ⎥
⎣ ⎦

  

where 11F  is l l× , 1H  is 1l × , and 

 

1

1 11

1
1 11

l

H
H F

rank l

H F −

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  
 
Theorem   
The linear state equation (1) is observable if and only if for every complex scalar λ  the only 
complex 1n×  vector p  that satisfies 
 , 0Ap p Cpλ= =   
 
is 0p = . 
 
In words, (1) is observable if and only if there is no (right) eigenvector for A  that is orthogonal to 
C . 
 
Theorem   
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The linear state equation (1) is observable if and only if 

 
C

rank n
sI A
⎡ ⎤

=⎢ ⎥−⎣ ⎦
  

for every complex scalar s . 
 
Controllability and Observability Forms 
 
There are special state-variable changes that are associated with the properties of controllability 
and observability, and these are useful for providing explicit and elementary proofs of various 
results in the sequel.  
 
Definition   
A linear state equation of the form  

 

[ ]
0 1

0 2 1

0 1 0

( ) ( ) ( )
0 1 0

1

( ) ( ) ( )
n

n n

x t x t u t

a a

y t c c c x t Du t
−

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

= +

 (9) 

is said to be in controllability form. (The “ A ” matrix has zero entries except for 1’s above the 
diagonal and possibly nonzero entries in the bottom row.) 
 
A controllability form state equation is controllable, regardless of the values of the ka  and kc  
coefficients, for the controllability matrix has the form 

 
1

1

1

0 0 1
0 0

0 1
1

n
n

n

a
B AB A B

a

−
−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

∼
∼

 

That is, the controllability matrix is lower triangular with one’s on the anti-diagonal (don’t care 
entries are denoted by “ ∼ ”). Furthermore, if a linear state equation (1) is controllable, then we 
will show how to construct an invertible state-variable change P  such that  

 
1 1( ) ( ) ( )

( ) ( ) ( )
z t P APz t P Bu t
y t CPz t Du t

− −= +
= +

 

is in controllability form. To explicitly compute P , suppose 
 1

1 1 0det( ) n n
nI A a a aλ λ λ λ−
−− = + + + +  (10) 

and define a set of 1n×  vectors according to 

 0

1 0 , 1, ,k k n k

p B
p Ap a p k n− −

=
= + = …

 

Since 1, , , nB AB A B−…  are linearly independent and kp  is a linear combination of 
1, , ,k kA B A B B− … , with nonzero scalar coefficient for kA B , it follows that 0 1 1, , , np p p −…  are 

linearly independent. Furthermore np , introduced purely for notational convenience, is 
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1 0 0
2

2 1 0 0 0
3 2

3 2 0 1 0 0 0

1
0 1 0 1 0 0 0

0

n n

n

n

n n
n

p Ap a p

A p a Ap a p

A p a A p a Ap a p

A p a A p a Ap a p

−

−

−

−
−

= +

= + +

= + + +

= + + + +
=

 

by the Cayley-Hamilton theorem. 
 
Now let 
 [ ]1 2 0n nP p p p− −=  
This n n×  matrix is invertible, since the columns are linearly independent, and a partitioned 
multiplication by P  verifies that  

 1

0

0
1

P B−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

To verify that 1P AP−  has the claimed form, another partitioned multiplication gives 

 

[ ]

[ ]

0 0 1 1 0 1 1 0

0 1 1

1 2 0

0 1 0
0 0 0

0 0 1
n n

n

n n

P a p p a p p a p

a a a

Ap Ap Ap
AP

− −

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ = − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

=

=

 

Thus we have verified that the state-variable change yields a state equation in controllability 
form, and the coefficients on the bottom row of 1P AP−  are precisely the coefficients of the 
characteristic polynomial of A . (The entries of CP  , the kc ’s in (9), have no particular 
interpretation at this point.) 
 
Using the connection between controllability and observability properties for (1) and (8), the 
parallel results for observability are straightforward to work out. For the record we state the 
conclusions as follows. 
 
Definition   
A linear state equation of the form  

 

[ ]

0 0

2

1 1

0
1

( ) ( ) ( )
0
1

( ) 0 0 1 ( ) ( )

n

n n

a b

z t z t u t
b

a b

y t z t Du t

−

− −

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

= +

 (11) 
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is said to be in observability form. (The “ A ” matrix has zero entries except for 1’s below the 
diagonal and possibly nonzero entries in the right-most column.) 
 
Such a state equation is observable, regardless of the coefficient values for the ka ’s and kb ’s. 
Furthermore, if (1) is an observable linear state equation, then there is a state-variable change that 
transforms it into observability form. Specifically, define a set of 1 n×  vectors by 

 0

1 0 , 1, ,k k n k

q C
q q A a q k n− −

=
= + = …

 

Then with 

 

1

21

0

n

n

q
q

Q

q

−

−−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

the variable change 1( ) ( )z t Q x t−=  renders (1) into (11). 
 
Exercises 
 
1.  Consider the linear bucket system shown below, with all parameter values unity. 
(a) If the input is applied to the left tank, is the state equation controllable? 
(b) If the input is applied to the center tank, is the state equation controllable? 
Can you intuitively justify your conclusions? 
 

 
 

2.  For what values of the parameter a is the linear state equation 

 

[ ]

1 1 1
( ) 0 1 0 ( ) 1 ( )

0 0 0 1

( ) 0 2 1 ( )

a
x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

 

controllable? Observable? 
 
3. Consider the n -dimensional linear state equation 

 11 12 1

22

( ) ( ) ( ) ( )
( ) ( )

c c nc

nc nc

z t F z t F z t G u t
z t F z t

= + +
=

 

where ( )cz t  is 1q× . Show that if 
 1

1 11 1 11 1
qrank G F G F G q−⎡ ⎤ =⎣ ⎦  

then given any initial state (0) , (0)c ncz z  there is an input signal ( )u t  and a finite time 0ft >  
such that ( ) 0c fz t = . 
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4.  Show that if the linear state equation  
( ) ( ) ( )x t Ax t Bu t= +  

is controllable, then any initial state ox  can be transferred to any desired state dx  in finite time. 
 
5.  Show that if the linear, dimension- n , state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

is controllable and  

 1
A B

rank n
C D
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 

then the linear state equation 

 
0

( ) ( ) ( )
0

A B
z t z t v t

C D
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

is controllable. 
 
6.  Show that the linear state equation 

( ) ( ) ( )x t Ax t Bu t= +  
is controllable if and only if the only n n×  matrix X that satisfies 
 , 0XA AX XB= =  
is 0X = . (Hint: Employ right and left eigenvectors of A.) 
 
7. Consider the n-dimensional linear state equation 

 11 12 11

21 22
( ) ( ) ( )

0
A A B

x t x t u t
A A
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

where 11A  is q q×  and 11B  is q m×  with rank q. Prove that this state equation is controllable if 
and only if the ( )n q− -dimensional linear state equation 
 22 21( ) ( ) ( )z t A z t A v t= +  
is controllable. 
 
8.  Suppose that the linear state equation 

( ) ( ) ( )x t Ax t Bu t= +  
is controllable and A has negative-real-part eigenvalues. Show that there exists a symmetric, 
positive-definite matrix Q such that  

 T TAQ QA BB+ = −  
 
9. Suppose that  

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

is controllable and there exists a symmetric, positive-definite Q such that 

 T TAQ QA BB+ = −  
Show that all eigenvalues of A have negative real parts. 
 
10.  Give proofs or counterexamples to the following statements about the linear state equations 
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( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

and 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

x t A BK x t Bu t
y t Cx t Du t

= − +
= +

 

(a) If  the first is controllable, then the second is controllable for all 1 n×  vectors K. 
 
(b) If the first is observable, then the second is observable for all 1 n×  vectors K. 
 
11. The linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

 is called output controllable if for any initial state there is a finite time 0ft >  and a continuous 

input signal such that the corresponding output response satisfies ( ) 0fy t = . Derive a necessary 

and sufficient condition for output controllability. Can you interpret your condition in terms of 
the transfer function of the state equation? 
 
12. Show that the linear state equation of dimension 2n = , 
 ( ) ( ) ( )x t Ax t Bu t= +  
is controllable for every nonzero vector B if and only if the eigenvalues of A are complex. 
 
13.  Suppose the linear state equation 

 
( ) ( ) , (0)
( ) ( )

ox t Ax t x x
y t Cx t

= =
=

 

is observable. Show that if ox  is such that lim ( ) 0t y t→∞ = ,   then lim ( ) 0t x t→∞ = .  
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6. Realization 
 
Given a linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

it is straightforward to compute the corresponding transfer function 
 1( ) ( )H s C sI A B D−= − +  (2) 
or unit-impulse response 
 ( ) ( )Ath t Ce B D tδ= +  
both of which represent the input-output behavior (zero-state output response) of the system. In 
this section we address the reverse: given a transfer function or unit-impulse response, 
characterize and compute the corresponding linear state equations. It should be clear that this is a 
more complex issue since we are attempting to infer the description and properties of internal 
variables from input-output information.  There are obvious limits to what can be inferred since a 
change of state variables does not change the transfer function or unit-impulse response. If there 
is one state equation that has the given transfer function, there are an infinite number, all of the 
same dimension. Perhaps less obvious is the fact that there also are infinite numbers of state 
equations with different dimensions that have the given transfer function. 
 
Example   
Consider two bucket systems, both with all parameter values unity. The first is the single bucket 

 
described by the scalar linear state equation 

 
( ) ( ) ( )
( ) ( )

x t x t u t
y t x t

= − +
=

 

An easy calculation gives the corresponding transfer function  

 1( )
1

H s
s

=
+

 

The three-bucket system shown below is described by 

 

[ ]

1 0 0 0
( ) 1 1 0 ( ) 1 ( )

0 1 1 0

( ) 0 1 0 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

=

 

The transfer function corresponding to this state equation is 
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[ ]

1

1

1 0 0 0
( ) ( ) 0 1 0 1 1 0 1

0 1 1 0
1

1

s
H s C sI A B D s

s

s

−

−

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + = − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

=
+

 

This confirms our cartoon intuition that the two bucket systems have the same input-output 
behavior, that is, zero-state output response.  
 
The bucket example motivates a concentration on least-dimension state equations corresponding 
to a given transfer function, on the grounds of economy. To make the discussion more precise, we 
adopt some formal terminology. It is presented in terms of transfer function descriptions of input-
output behavior, but extends naturally to unit-impulse response descriptions. 
 
Definition   
Given a transfer function ( )H s , a linear state equation (1) is called a realization of ( )H s  if 
 1( ) ( )C sI A B D H s−− + =  
A transfer function is called realizable if there exists such a realization. If (1) is a realization of 

( )H s  with dimension n  and no lower-dimension realization exists for ( )H s , then (1) is called a 
minimal realization of ( )H s  . 
 
Realizability 
 
An obvious first step is to characterize realizability. For this purpose, recall the definitions of 
proper and strictly-proper rational functions in Section 3. 
 
Theorem   
A transfer function is realizable if and only if it is a proper rational function. 
 
Proof   
If a transfer function ( )H s  is realizable, then we can assume that (1) is a corresponding 
realization. From (2) and the fact from Section 2 that 1( )sI A −−  is a matrix of strictly-proper 
rational functions it follows easily that ( )H s  is a proper rational function (strictly proper if 

0D = ). 
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Now suppose ( )H s  is a proper rational function. From Section 3 we can write it in the form 

 
1 1

1 1 0 0 1 1 0
1 1

1 1 0 1 1 0

( ) ( )n n n
n n n
n n n n

n n

Ds c a D s c a D c s c s c D
s a s a s a s a s a s a

− −
− − −

− −
− −

+ + + + + + + +
= +

+ + + + + + + +
 (3) 

This identifies the value of D , and we next show that the (controllability form) linear state 
equation specified (in our shorthand notation from Section 5) by 
  

 [ ]0 2 1

0 1

0 1 0

, ,
0 1 0

1

n n

n

A B C c c c

a a

− −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 (4) 

 
is such that 

 
1

1 1 1 0
1

1 1 0

( )
n

n
n n

n

c s c s cC sI A B
s a s a s a

−
− −

−
−

+ + +
− =

+ + + +
 (5) 

To simplify the calculation, first compute the 1n×  vector 
 1( ) ( )Z s sI A B−= −  
by examining  
 ( ) ( )sI A Z s B− =  
that is 

 

1

1

0 2 1

1 ( ) 0

1 ( ) 0
( ) 1

n

n n n

s z s

s z s
a a s a z s

−

− −

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 
In scalar form this corresponds to the set of equations 

 

1 2

2 3

1

0 1 2 1 1

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) 1

n n

n n n n

sz s z s
sz s z s

sz s z s
a z s a z s s a z s

−

− − −

=
=

=
+ + + + =

 

Recursive substitution gives an equation in 1( )z s  alone, 
 1

0 1 1 1 1 1 1( ) ( ) ( ) ( ) 1n n
na z s a sz s a s z s s z s−
−+ + + + =  

Thus 

 1 1
1 1 0

1( ) n n
n

z s
s a s a s a−

−

=
+ + + +

 

and this specifies the other entries: 

 1
1 1 0

1

1
1( ) n n

n
n

s
Z s

s a s a s a
s

−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+ + + +
⎢ ⎥
⎣ ⎦

 

Finally, 
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1

1 1 1 0
1

1 1 0

( ) ( )
n

n
n n

n

c s c s cC sI A B CZ s
s a s a s a

−
− −

−
−

+ + +
− = =

+ + + +
 

 
 
This proof provides a recipe for constructing a realization for a proper-rational transfer function. 
Also, application of partial fraction expansion to (5) and careful consideration of the types of 
terms that can arise lead to the time-domain version of the realizability result.  
 
Corollary   
A unit-impulse response is realizable if and only if it has the exponential polynomial form 

 
1

1 0
( ) ( )

k
k

ml
tj

kj
k j

h t h t e D tλ δ
−

= =

= +∑∑  

where l  and 1, , lm m…  are positive integers, and where the following conjugacy constraint is 
satisfied. If qλ  is complex, then for some r q≠ , , ,r q r qm mλ λ= =  and the corresponding 

coefficients satisfy rj qjh h=  for 0, , 1rj m= −… . 
 
Considering the general convolution representation for LTI systems, the corollary makes it 
evident that realizable LTI systems form a rather special subclass!  
 
Minimal Realization 
 
Next consider the characterization of minimal realizations of a given (realizable) input-output 
description, an issue that relies on the concepts introduced in Section 5. The results are phrased in 
terms of transfer functions, as this representation is more amenable to explicit treatment than is 
the unit-impulse response. Indeed, the easiest way to write down a realization for a given 
(realizable) unit-impulse response is to first compute the corresponding transfer function. 
 
Theorem   
Suppose (1) is a realization of a given transfer function ( )H s . Then it is a minimal realization of 

( )H s  if and only if it is controllable and observable. 
 
Proof     
We first show that controllability and observability imply minimality by arguing the 
contrapositive. Suppose (1) is an n -dimensional realization of ( )H s  that is not minimal. Then 
there exists a realization of ( )H s , 

 
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gu t
y t Hz t Ju t

= +
= +

 (6) 

that has dimension zn n< . Since the unit impulse responses of (1) and (6) are the same, we have 
J D= , and 
 , 0At FtCe B He G t= ≥  
Repeated differentiation with respect to t  with evaluation at 0t =  gives 
 , 0,1,k kCA B HF G k= = …  
We can arrange the first 2 1n −  values of this scalar data into matrix form to obtain 
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1 1

2 2

1 2 2 1 2 2

n n

n n

n n n n n n

CB CAB CA B HG HFG HF G
CAB CA B CA B HFG HF G HF G

CA B CA B CA B HF G HF G HF G

− −

− − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

This can be written as 

 1 1

1 1

n n

n n

C H
CA HF

B AB A B G FG F G

CA HF

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

The right side is the product of an zn n×  matrix and an zn n×  matrix, and thus cannot have rank 
greater than zn . This shows that (1) cannot be both controllable and observable. 
 
Next, suppose that (1) is a minimal, dimension- n , realization of ( )H s , but that it is not 
controllable. Then there exists an 1 n× , nonzero vector q  such that  
 1 0nq B AB A B−⎡ ⎤ =⎣ ⎦  

Further, by the Cayley-Hamilton theorem, 
 0 , 0,1,kqA B k= = …  
Let 1P−  be an invertible n n×  matrix with bottom row q , say 

 1 P
P

q
− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and change state variables according to 1( ) ( )z t P x t−=  to obtain another minimal realization for 
( )H s : 

 
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gu t
y t Hz t Du t

= +
= +

 

The coefficient matrices in this minimal realization can be written in partitioned form as 

 [ ]11 12 1
1 2

21 22

, ,
0

F F G
F G H H H

F F
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

where 11F  is ( 1) ( 1)n n− × − , 1G  is ( 1) 1n − × , and 1H  is1 ( 1)n× − . The key is the zero at the 
bottom of G , for further computation gives 

 11 12 11 11

21 22 21 10
F F F GG

FG
F F F G
⎡ ⎤ ⎡ ⎤⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 

and also 

 1 1 1

0
PAB PAB

FG P AP P B P AB
qAB

− − − ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

Thus 21 1 0F G = . Continuing yields 

 11 1 , 0,1,
0

k
k F G

F G k
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

…  

But then  

 11 1

1

( ) ( ) ( )
( ) ( ) ( )

z t F z t G u t
y t H z t Du t

= +
= +
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is a dimension- ( 1)n −  realization for ( )H s  since, arguing in the time domain, 

 
[ ] [ ]

11

11 1
1 2 1 2

0 0

1 11 1 1 1
0

! !0

!

kk k
Ft k

k k

k
F tk

k

F Gt tHe G H H F G H H
k k

tH F G H e G
k

∞ ∞

= =

∞

=

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

= =

∑ ∑

∑
 

Of course this contradicts the original minimality assumption, so (1) must be controllable. A 
similar argument leads to a similar contradiction if we assume that (1) is not observable. 
Therefore a minimal realization must be both controllable and observable.   
 
It is natural to refer to a controllable and observable linear state equation as minimal state 
equation in the sense that it is a minimal realization of its own transfer function/unit-impulse 
response. Another characterization of minimality for a linear state equation that is related to the 
transfer function viewpoint is the following. 
 
Theorem   
The linear state equation (1) is minimal if and only if the polynomials det( )sI A−  and 

adj( )C sI A B−  are coprime (have no roots in common). 
 
Proof   
We can assume 0D =  since the value of D  has no effect on either minimality or on the 
coprimeness claim. Suppose (1) is minimal and of dimension n . Then its transfer function, 

 1 adj( )( ) ( )
det( )

C sI A BH s C sI A B
sI A

− −
= − =

−
 

is strictly-proper with deg{det( )}sI A n− = . Suppose det( )sI A−  and adj( )C sI A B−  have a 
factor in common. Then by canceling this common factor we can write the transfer function as a 
strictly-proper rational function of degree no greater than 1n − . But then the obvious 
controllability form realization is of this same, lower dimension, which contradicts minimality of 
(1). 
 
Now suppose that (1) is of dimension n  and that the polynomials det( )sI A−  and 

adj( )C sI A B−  are coprime. Writing 

 
1

1 1 0
1

1 0

adj( )

det( )

n
n
n n

n

C sI A B c s c s c

sI A s a s a

−
−

−
−

− = + + +

− = + + +
 

another dimension- n  realization of the transfer function of (1) is the controllability form state 
equation  

 
( ) ( ) ( )
( ) ( )

z t Fz t Gu t
y t Hz t

= +
=

 (7) 

with 

[ ]0 2 1

0 1

0 1 0

, ,
0 1 0

1

n n

n

F G H c c c

a a

− −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 

   
This state equation is controllable, so its minimality – and hence minimality of (1) – is equivalent 
to observability. Proceeding by contradiction, if (7) is not observable, then there exists an 
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eigenvalue λ  of  F  (a root of det( ) det( )sI A sI F− = − ) and corresponding eigenvector p such 
that 
 , 0Fp p Hpλ= =  
In scalar terms, 

 

2 1

0 1 1
1

0 1 1

, 0n n
n n

n n n

p p

c p c p
p p

a p a p p

λ

λ
λ

−
−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + + =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

Using the first equation to express the second in terms of 1p  alone gives 
 1

0 1 1 1( ) 0n
nc c c pλ λ −
−+ + + =  

Noting that 1 0p ≠ , for otherwise 0p = , we have that λ  also is a root of 
 1

0 1 1 adj( )n
nc c s c s C sI A B−
−+ + + = −  

This contradicts coprimeness, and we conclude that (7) is observable, hence minimal.  
 
This result implicates common factors in the numerator and denominator of a transfer function as 
a root cause of non-minimal realizations. In the three-bucket system example of nonminimality, it 
is easy to verify that 
 3 2det( ) ( 1) , adj( ) ( 1)sI A s C sI A B s− = + − = +  
leading to the transfer function 

 

2
1

3

adj( ) ( 1)( ) ( )
det( ) ( 1)

1
1

C sI A B sH s C sI A B
sI A s

s

− − +
= − = =

− +

=
+

 

Another easy consequence is that for a minimal, dimension- n  state equation, the set of n  poles 
(including multiplicities) of its transfer function is identical to the set of  n  eigenvalues of A  . 
Finally, a method for constructing a minimal realization for a given (realizable) transfer function 
is to first isolate the D  as in (3), then cancel any common factors from the numerator and 
denominator of the strictly-proper rational portion, and then write, by inspection, the 
controllability form A , B , and C as in (4). 
 
Though realizations of an input-output description are highly non-unique, for minimal 
realizations the non-uniqueness is essentially in the choice of internal (state) variables. 
 
Theorem   
Suppose (1) and 

 
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gu t
y t Hz t Ju t

= +
= +

 (8) 

are both n -dimensional minimal realizations of a given transfer function ( )H s . Then J D=  and 
there exists a unique, invertible, n n×  matrix P  such that  
 1 1, ,F P AP G P B H CP− −= = =  (9) 
 
Proof   
Since J D=  is obvious, we focus on the construction of P  such that (9) holds. By hypothesis, 
 , 0At FtCe B He G t= ≥  
Differentiating repeatedly with respect to t  and evaluating at 0t =  gives 
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 , 0,1,k kCA B HF G k= = …  (10) 
Writing the controllability and observability matrices, all invertible, for the two realizations as 

 

1 1

1 1

,

,

n n
A F

A F

n n

C B AB A B C G FG F G

C H
CA HF

O O

CA HF

− −

− −

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

the scalar equalities can be arranged in matrix form to yield 
 A A F FO C O C=  (11) 
Now set 1

A FP C C−=  , which by (11) is the same as 1
A FP O O−= . Then  

 1 1 1
F A F AP C C O O− − −= =  

and (9) is verified as follows. We can write 
 1 1

F F A A AC C C C P C− −= =  
the first column of which gives 1G P B−= . Similarly, 
 1

F A A F AO O O O O P−= =  (12) 
the first row of which gives H CP= . Finally, the scalar equalities in (10) also can be arranged 
into the matrix equality 
 A A F FO AC O FC=  
This permits the calculation 
 1 1 1 1 1

F A A F F F F FP AP O O AC C O O FC C F− − − − −= = =  
To show uniqueness of P , suppose Q  is such that  
 1 1, ,F Q AQ G Q B H CQ− −= = =  
Then 
 1( ) , 0,1,k k kHF CQ Q AQ CA Q k−= = = …  
and thus 
 F AO O Q=  (13) 
From (12) and (13) we have 
 ( ) 0AO P Q− =  
and invertibility of AO  gives P Q= .  
 
Exercises 
 
1. For the electrical circuit shown below, with voltage input ( )u t  and current output ( )y t , 
compute the transfer function of the circuit (the driving-point admittance). What is the dimension 

of minimal realizations of this transfer function? What happens if 2R C L= ? Explain. 
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2.  For the transfer function 

 
2

2

( 1/ 4)( )
( 2)

sH s
s
−

=
+

 

provide realizations that are controllable and observable, controllable but not observable, 
observable but not controllable, and neither controllable nor observable. 
 
3.  Show that a linear state equation 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

 is minimal if and only if  

 
( ) ( ) ( ) ( )
( ) ( )

x t A BC x t Bu t
y t Cx t

= − +
=

 

 is minimal. What is the relationship between the two state equations? 
 
4.  For what values of the parameter α  is the linear state equation 

 

[ ]

1 0 2 1
( ) 0 3 0 ( ) 1 ( )

0 1 1

( ) 1 0 1 ( )

x t x t u t

y t x t

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

 

minimal? 
 
5.  Given any n n×  matrix A, do there exist 1n×  B and 1 n×  C such that 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

 is minimal? 
 
6.  Consider the cascade connection of two minimal linear state equations  

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
w t Cx t Du t

= +
= +

      and      
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gv t
y t Hz t Jv t

= +
= +

 

(That is, set ( ) ( )v t w t= .) Write a linear state equation for the overall system and 
establish a necessary and sufficient condition for it to be minimal. 
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7. Stability Again 
 
With the tools of controllability and observability available, we return to the stability issue left 
unresolved in Section 4, namely, the relationship between asymptotic stability and uniform 
bounded-input, bounded-output stability for the linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

 
Equivalence of External and Internal Stability 
 
The first result is straightforward, and likely recognized by astute readers of Section 4. 
 
Theorem    
If the linear state equation (1) is asymptotically stable, then it is uniformly bounded-input, 
bounded-output stable. 
 
Proof   
Using the representation for the matrix exponential derived from partial fraction expansion, we 
can write 

 
1

1 1 ( 1)!

k
k

m jl
tAt

kj
k j

tCe B CW B e
j

λ
−

= =

=
−∑∑  (2) 

where each kλ  is an eigenvalue of A  with multiplicity km . Since each eigenvalue has negative 
real part, 

 1

1 10 0

1
( 1)!

k
k

ml
tAt j

kj
k j

Ce B dt CW B t e dt
j

λ
∞ ∞

−

= =

≤
−∑∑∫ ∫  

and the right side is finite. Thus the state equation is uniformly bounded-input, bounded-output 
stable.  
 
It is the converse that requires the developments in Sections 5 and 6. 
 
Theorem    
If the linear state equation (1) is controllable, observable, and uniformly bounded-input, 
bounded-output stable, then it is asymptotically stable. 
 
Proof   
Since (1) is uniformly bounded-input, bounded-output stable, the absolute integrability of the 
unit-impulse response implies 
 lim ( ) lim 0At

t th t Ce B→∞ →∞= =  
Moreover, since ( )h t  has the exponential polynomial form (2), it is easy to see that that the time 
derivative of ( )h t  also has exponential polynomial form, with the same kλ ’s in the exponents 
but different coefficients. Therefore 
 lim ( ) lim lim 0At At

t t th t CAe B Ce AB→∞ →∞ →∞= = =  
This argument can be repeated for subsequent derivatives to give 
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2 2

(2 2) 2 2 2 3

2 3 2 2

lim ( ) lim lim lim 0

lim ( ) lim lim

lim lim
0

At At At
t t t t

n n At n At
t t t

At n At n
t t

h t CA e B CAe AB Ce A B

h t CA e B CA e AB

CAe A B Ce A B

→∞ →∞ →∞ →∞

− − −
→∞ →∞ →∞

− −
→∞ →∞

= = = =

= =

= = =

=

 

Arranging this data in an n n×  matrix form gives 

 

( )

1

1

1 1 1 1

1

1

1

1

0 lim

lim

lim

At At At n

At At At

t

n At n At n At n

At
t

n

At
t

n

Ce B Ce AB Ce A B
CAe B CAe AB CAe A B

CA e B CA e AB CA e A B

C
CA

e B AB A B

CA

C
CA

e B AB A B

CA

−

−

→∞

− − − −

−
→∞

−

−
→∞

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎤⎣ ⎦

 

Using the controllability and observability assumptions, we can multiply this expression by the 
appropriate inverses to conclude that 
 lim 0At

t e→∞ =  
which implies asymptotic stability of (1).  
 
Thus the hidden instability issue in Section 4 cannot arise for a minimal linear state equation. 
 
Stability of Interconnected Systems 
 
Using these results we can address issues of hidden stability for interconnections of LTI systems, 
always assuming that the subsystems are described by minimal (controllable and observable) 
realizations so that the internal and external stability properties of the subsystems are equivalent. 
For example, consider the additive parallel connection shown below 

 
where the subsystem 1( )H s  is described by the minimal state equation 

 
1

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +
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 and 2 ( )H s is described by the minimal state equation 

 
2

( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gu t
y t Hz t Ju t

= +
= +

 

The overall system is described by the transfer function 
 1 2( ) ( ) ( )H s H s H s= +  (3) 
and by the linear state equation 

 

[ ]

( ) 0 ( )
( )

( ) 0 ( )

( )
( ) ( ) ( )

( )

x t A x t B
u t

z t F z t G

x t
y t C H D J u t

z t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

 (4) 

 
Theorem   
For the additive-parallel connection, the overall system (4) 
(a)  is asymptotically stable if and only if each subsystem is asymptotically stable, 
(b)  is uniformly bounded-input, bounded-output stable if each subsystem is uniformly bounded-
input, bounded-output stable. 
 
Proof   
Claim (a) follows from the fact that the eigenvalues of  

 
0

0
A

F
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

are given by the union of the eigenvalues of A  and the eigenvalues of F . Claim (b) is equally 
straightforward, and follows by noting from (3) , written over the common denominator, that the 
poles of ( )H s  are a subset of the union of the poles of 1( )H s  and the poles of 2 ( )H s . 
 
 
Remark    
This result obviously applies to additive-parallel connections of any number of LTI subsystems. 
Also, an easy counterexample to the converse of claim (b) is provided by 

 
1 2

2 2

2 1 1( )
1 1 1
3 1 1( )

2 2 1

sH s
s s s

H s
s s s s

= = +
− + −
−

= = −
+ − + −

 

and corresponding minimal realizations. 
 
 
Analogous results for the series connection of two LTI systems are the subject of Exercise 7.1. 
The feedback connection is discussed in subsequent sections, as it is much more subtle. (Indeed, 
the feedback connection of LTI systems may not even be well defined!) 
 
Exercises 
 
1.  Consider the series connection of two minimal state equations (subsystems) 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
w t Cx t Du t

= +
= +

      and      
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gv t
y t Hz t Jv t

= +
= +
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(That is, set ( ) ( )v t w t= .)  Provide proofs or counterexamples to the following claims. 
(a)  If the two subsystem state equations are asymptotically stable (respectively, uniformly 
bounded-input, bounded-output stable), then the overall system is asymptotically stable 
(respectively, uniformly bounded-input, bounded-output stable). 
(b)  If the overall system is asymptotically stable (respectively, uniformly bounded-input, 
bounded-output stable), then the two subsystems are asymptotically stable (respectively, 
uniformly bounded-input, bounded-output stable).  
 
2.  Show that the SISO state equations 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t u t

= +
= +

 

and  

 
( ) ( ) ( ) ( )
( ) ( ) ( )

x t A BC x t Bu t
y t Cx t u t

= − +
= − +

 

are inverses of each other in the sense that the product of their transfer functions is unity. If the 
first state equation is uniformly bounded-input, bounded-output stable, is the second state 
equation? 
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8. LTI Feedback 
 
In this section we begin the study of feedback in LTI systems from the viewpoints of both state 
equation representations and transfer function representations. 
 
State and Output Feedback 
 
Consider the dimension- n  linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

often called the open-loop state equation in this context, and the linear state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  (2) 
where K  is 1 n×  and N  is a scalar. This yields the closed-loop state equation 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A BK x t BNr t
y t C DK x t DNr t

= + +
= + +

 (3) 

In a similar manner, we can consider linear output feedback 
 ( ) ( ) ( )u t Ly t Nr t= +  (4) 
where L  and N  both are scalars. But, in this case an issue arises when (4) is expressed in terms 
of the state, 
 ( ) ( ) ( ) ( )u t LCx t LDu t Nr t= + +  (5) 
Namely, when 1LD =  the input ( )u t  is undefined. The following terminology is standard. 
 
Definition  
The output feedback system (1), (4) is said to be well posed  if 1LD ≠ . 
 
When the output feedback system is well posed, substitution of (5) into (1) yields the closed-loop 
state equation 

 
1 1

1 1
1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( )
LD LD

LD LD

x t A BLC x t BN r t

y t C x t DNr t
− −

− −

= + +

= +
 (6) 

Basic properties describing the zero-state and zero-input responses of the closed-loop state 
equation in terms of the open-loop state equation are provided by the following results. Note that 
closed-loop quantities can be written in explicit terms of open-loop quantities only when the 
Laplace transform representation is adopted. 
 
Theorem    
For the linear state equation (1) with state feedback (2), the open and closed-loop matrix 
exponentials are related by 

 ( ) ( ) ( )

0

t
A BK t At A t A BKe e e BKe dσ σ σ+ − += + ∫  (7) 

 
In terms of Laplace transforms, 
 

11 1 1( ) ( ) ( )sI A BK I sI A BK sI A
−− − −⎡ ⎤− − = − − −⎣ ⎦  (8) 

With output feedback (4), assuming 1LD ≠ , these relations hold after replacing K  by 

 
1

L
LD

C
−
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Proof   
Writing the right side of (7) as 

 ( )

0

( )
t

At At A A BKF t e e e BKe dσ σ σ− += + ∫  

we have  

 
( ) ( )

0
( )

( )

( )

t
At At A A BK At At A BK t

A BK t

F t Ae Ae e BKe d e e BKe

AF t BKe

σ σ σ− + − +

+

= + +

= +

∫  (9) 

and, furthermore, (0)F I= . But ( )A BK te +  is the unique solution of 
 ( ) ( ) ( ) ( ) ( ) , (0)F t A BK F t AF t BKF t F I= + = + =  
Therefore 
 ( )( ) ( ) , (0)A BK tF t AF t BKe F I+= + =  
implies ( )( ) A BK tF t e += , and (7) is verified. Taking the Laplace transform of  (7), using in 
particular the convolution property, gives 
 1 1 1 1( ) ( ) ( ) ( )sI A BK sI A sI A BK sI A BK− − − −− − = − + − − −  
an expression that easily rearranges to (8). The corresponding results for a well-posed output 
feedback system are obvious. 
 
 
For the zero-state response, a useful expression relating the open- and closed-loop unit-impulse 
responses or transfer functions is not available for the case of state feedback. However the 
situation is somewhat better for output feedback, assuming it is well posed. 
 
Theorem    
Consider the linear state equation (1) with output feedback (4), where 1LD ≠ . Then the open- 
and closed-loop unit-impulse responses (in an obvious notation) are related by 

 
0

( ) ( ) ( ) ( ) , 0
t

cl ol ol clh t Nh t L h t h d tσ σ σ= + − ≥∫  (10) 

 
In terms of Laplace transforms 

 ( )( )
1 ( )

ol
cl

ol

NH sH s
LH s

=
−

 (11) 

 
Proof   
To simplify notation, let 

 1
1 LD

α =
−

 

Then with K LCα= , (7) gives 

 ( ) ( ) ( )

0

t
A B LC t At A t A B LCe e e B LCe dα σ α σα σ+ − += + ∫  

Multiplying by 2 NCα  on the left, and B  on the right yields 

 2 ( ) 2 ( ) ( )

0

t
A B LC t At A t A B LCN Ce B N Ce B Ce NB L Ce NBdα σ α σα α α α α α σ+ − += + ∫  (12) 

From (1) and (6) we can write the open- and closed-loop unit-impulse responses as 
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( )

( ) ( )

( ) ( )

At
ol

A LBC t
cl

h t Ce B D t

h t Ce NB DN tα

δ

α α α δ+

= +

= +
 

Substituting into (12) and evaluating the impulsive convolutions gives (10). Finally, the Laplace 
transform of (10) , again using the convolution property, is 
 ( ) ( ) ( ) ( )cl ol ol clH s NH s LH s H s= +  
an expression that yields (11).   
 
Obviously these results are for static LTI feedback. State equation analysis for feedback 
involving dynamic LTI systems is discussed in the sequel. 
 
Transfer Function Analysis 

 
Feedback often is addressed in terms of transfer function representations, for reasons that should 
be clear from the results above, and again issues arise about whether a feedback interconnection 
of LTI systems is well defined. We assume throughout that the subsystem transfer functions are 
proper rational functions. (Entrenched notation motivates a change of symbolism.) 
 
Example   
For the simple unity-output-feedback system shown 

 
with  

 1( )
2

sP s
s
−

=
+

 

application of (11) gives the closed-loop transfer function 

 
1
2

1
2

( ) 1
( ) 1 ( ) 1 3

( ) s
s

s
s

Y s s
R s P s

P s −
+
−
+

−
= = =

− −
 (13) 

 
which of course is not a proper rational function. Also the transfer function  

 ( ) 2
( ) 1 ( ) 3

1U s s
R s P s

+
= =

−
 

is improper. This actually is a more basic observation, since (13) is obtained by multiplication by 
a proper rational function: 

 ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

Y s Y s U s U sP s
R s U s R s R s

= =  

In any case, the situation is easily seen to be a manifestation of the failure of the well-posed 
condition for output feedback in a state equation setting by considering a (minimal) realization for 

( )P s , 

 
( ) 2 ( ) ( )
( ) 3 ( ) ( )

x t x t u t
y t x t u t

= − +
= − +

 

and writing the feedback as 
 ( ) ( ) ( ) 3 ( ) ( ) ( )u t y t r t x t u t r t= + = − + +  
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That is, the closed-loop system cannot be described by a linear state equation (1), for such a state 
equation cannot have an improper transfer function as in (13). 
 
 
In addition to the fact that improper rational functions are outside the class of LTI systems we 
consider, Exercise 4.9 provides further motivation for avoiding them. We use the following 
terminology in the transfer function setting. An interconnection of (proper rational) transfer 
functions is called well posed  if all transfer functions from external inputs to internal signals in 
the closed-loop system are proper. Details and further specificity depend on the particular 
interconnection at hand, and a general analysis that covers a wide range of interconnections is 
rather complex. For simplicity, we will focus on the unity feedback system shown below, where 
the external inputs signals are a reference input ( )R s  and a disturbance input ( )W s . Of course 
we assume that the subsystem transfer functions, ( )C s  and ( )P s , are proper-rational transfer 
functions.  

 
From the block diagram, 

 
( ) ( ) ( ) ( ) ( )( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )
E s R s Y s R s P s V s W s

R s P s C s E s P s W s
= + = + +
= + +

 

which gives 

 1 ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

P sE s R s W s
P s C s P s C s

= +
− −

 (14)  

Also 

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
U s W s V s W s C s R s Y s

W s C s R s P s C s U s
= + = + +

= + +
 

gives 

 ( ) 1( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

C sU s R s W s
P s C s P s C s

= +
− −

 (15) 

Thus the feedback system is well posed if (and only if) the three distinct transfer functions 
occurring in (14) and (15) are proper. (Note that transfer functions from ( )R s  and ( )W s  to ( )V s  
and ( )Y s  are products of proper rational (subsystem) transfer functions and the transfer functions 
in (14) and (15).)  However, it is clear that only one of the transfer functions need be checked, 
namely 

 1
1 ( ) ( )P s C s−

 

since products of proper rational functions are proper rational functions. 
 
It is traditional in the transfer function setting to explicitly display the “ D -terms” in ( )C s  and 

( )P s  by writing 
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( ) ( ) ( )

( ) ( ) ( )
sp

sp

C s C C s

P s P P s

= ∞ +

= ∞ +
 (16) 

where ( )spC s  and ( )spP s  are strictly proper rational functions with monic denominator 
polynomials. That is, by evaluating a proper rational function with denominator degree n  as 
| |s →∞  , the coefficient of ns  in the numerator polynomial is obtained. 
Theorem   
If  ( )C s  and ( )P s  are proper rational transfer functions, then the unity feedback system is well 
posed if and only if 1 ( ) ( ) 0C P− ∞ ∞ ≠ . 
 
Proof   
We need only show that  

 1
1 ( ) ( )C s P s−

 (17) 

 
is proper if and only if 1 ( ) ( ) 0C P− ∞ ∞ ≠ . But writing 

 ( ) ( )1 ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sp sp sp spC s P s C P P C s P s C P s C s− = − ∞ ∞ + ∞ + ∞ +  

which is the sum of a constant and a strictly-proper rational function, it follows that (17) is proper 
if and only if the constant, 1 ( ) ( )C P− ∞ ∞ , is nonzero. 
 
 
An obvious consequence that applies to the typical situation in beginning courses on feedback 
control, where the notion of well-posed feedback systems usually is not addressed, is that the 
feedback system is well posed if either ( )C s  or ( )P s  is strictly proper. 
 
Exercise 8.1 deals with a state equation analysis of the unity-feedback system. 
 
Exercises 
 
1.  For the unity feedback system, suppose that the subsystem ( )P s  is described by the minimal 
linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 

 and ( )C s is described by the minimal state equation 

 
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Ge t
v t Hz t Je t

= +
= +

 

Using the relationships 
 ( ) ( ) ( ) , ( ) ( ) ( )e t r t y t u t v t w t= + = +  
to write the closed-loop state equation in terms of the state vector 

 
( )
( )

x t
z t
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

with inputs ( )r t  and ( )w t , and output ( )y t , derive a necessary and sufficient condition for the 
system to be well posed. 
 
2. Consider the linear state equation 
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1

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t C x t Du t

= +
= +

 

Suppose ( )r t  is a reference input signal, and the vector signal 
 2 1 2( ) ( ) ( ) ( )v t C x t E r t E u t= + +  
is available for feedback. For the cn − dimensional dynamic feedback  

 
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gv t
u t Hz t Jv t

= +
= +

 

compute, under appropriate assumptions, the coefficient matrices for the ( )cn n+ − dimensional 
closed-loop state equation. 
 
3.  The SISO state equation  

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

is said to have unity dc-gain if for any given constant u  there exists an 1n×  vector x  such that 
 0 ,Ax Bu Cx u+ = =  
Under the assumption that 

 
0

A B
C
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

is invertible, show that 

(a) if a 1 n×  matrix K  is such that ( )A BK+  is invertible, then 1( )C A BK B−+  is nonzero 
(b) if a 1 n×  matrix K  is such that ( )A BK+  is invertible, then there exists a constant gain G  
such that the state equation 

 
( ) ( ) ( ) ( )
( ) ( )

x t A BK x t BGu t
y t Cx t

= + +
=

 

has identity dc-gain. Hint: Work with the matrix 

 
0

A BK B
C
+⎡ ⎤

⎢ ⎥
⎣ ⎦

 

and its inverse. 
 
4.  For the linear state equation 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

with state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  
show that the transfer function of the closed-loop state equation can be written in terms of the 
open-loop transfer function as 
 1 1 1( ) [ ( ) ]C sI A B I K sI A B N− − −− − −  
(This shows that the input-output behavior of the closed-loop system can be obtained by using a 
precompensator instead of feedback.) Hint: Verify the following identity for an n m×  matrix P 
and an m n×  matrix Q, where the indicated inverses are assumed to exist: 
 1 1( ) ( )P I QP I PQ P− −− = −  
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5.  For the feedback system shown below, where ( )P s  and ( )C s  are proper rational functions, 

 
derive a necessary and sufficient condition for the system to be well posed. 
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9. Feedback Stabilization 
 
In this section we discuss the use of feedback to stabilize a given LTI open-loop state equation or 
transfer function. Attention is focused on obtaining an internally stable (asymptotically stable) 
closed-loop system, for this implies uniform bounded-input, bounded-output stability, and avoids 
issues of hidden instability discussed in Sections 4 and 7. Basic necessary and sufficient 
conditions are provided in the case of static state feedback, and a characterization of all 
stabilizing controllers is provided in the transfer function setting. In the course of our 
development, the celebrated eigenvalue assignability result for static state feedback is established. 
 
State Feedback Stabilization 
 
Consider the dimension- n  linear state equation 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

 (1) 

with linear state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  (2) 
where K  is 1 n×  and N  is a scalar. This yields the closed-loop state equation 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A BK x t BNr t
y t C DK x t DNr t

= + +
= + +

 (3) 

Focusing on asymptotic stability of  (3), we can ignore the output equation and the input term. 
The issue is existence of K  such that all eigenvalues of A BK+  have negative real parts.  
 
Remark   
Static output feedback might be proposed as a more convenient mechanism for obtaining an 
asymptotically stable closed-loop state equation, but easy examples show that this approach often 
fails. Moreover, it turns out to be difficult to delineate properties of the open-loop state equation 
that are equivalent to existence of a stabilizing (static) output feedback. The case of dynamic 
output feedback in the state equation setting is addressed in the sequel.  
 
It is obvious from intuition, or simple examples with diagonal A ,  that the concept of 
controllability, or something like it, is involved. Indeed, we approach the issue by first 
establishing the result that controllability is sufficient for stabilization, and then we develop a 
necessary and sufficient condition. Since eigenvalues of a real matrix must occur in complex 
conjugate pairs, this constraint often is left understood, and the following result is referred to as 
the eigenvalue assignability theorem. 
 
Theorem    
Suppose that (1) is controllable. Then given any set of n  complex numbers, 1, , nλ λ… , conjugates 
included, there exists a state feedback gain K  such that these are the eigenvalues of A BK+ . 
 
Proof    
Since  (1) is controllable, from Section 5 we can compute an invertible, n n×  matrix P  to obtain 
the controllability form coefficients 

 1 1

0 1

0 1 0

,
0 1 0

1n

P AP P B

a a

− −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦
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where the bottom row of 1P AP−  displays the coefficients of the characteristic polynomial of A . 
Given a desired set of eigenvalues, 1, , nλ λ… , let ( )p λ  be the corresponding desired characteristic 
polynomial, 

 1 2
1

1 0

( ) ( )( ) ( )n
n n

n

p

p p

λ λ λ λ λ λ λ

λ λ −
−

= − − −

= + + +
 

Letting 
 [ ]0 0 1 1 1 1cf n nK p a p a p a− −= − + − + − +  
an easy calculation gives 

 1 1

0 1

0 1

0 1cf

n

P AP P BK

p p

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

which shows that controllability form is preserved under state feedback. Moreover, 
the coefficients of the bottom row show that this matrix has the desired eigenvalues. Since 
 ( )1 1 1 1

cf cfP AP P BK P A BK P P− − − −+ = +  

and a similarity transformation does not alter eigenvalues it is clear that the gain 1
cfK K P−=  is 

such that A BK+  has eigenvalues 1, , nλ λ… . 
 
 
Obviously controllability is a sufficient condition for existence of a stabilizing state feedback 
gain, simply require that the desired eigenvalues have negative real parts, but a sharper condition 
can be proved. 
 
Theorem    
For the linear state equation (1), there exists a state feedback gain K  such that all eigenvalues of 
A BK+  have negative real parts if and only if 
 [ ]rank I A B nλ − =  (4) 
for every λ  that is a nonnegative-real-part eigenvalue of A . 
 
Proof   
From a lemma in Section 5, supposing that  
 1nrank B AB A B q−⎡ ⎤ =⎣ ⎦  

where 0 q n< <  (the cases 0q = and q n=  are trivial) there exists an invertible, n n×  matrix P  
such that 

 11 12 11 1

22

,
0 0

F F G
F P AP G P B

F
− −⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (5)  

where 11F  is q q× , 1G  is 1q× , and 
 1

1 11 1 11 1rank qG F G F G q−⎡ ⎤ =⎣ ⎦  

Equivalently, 
 [ ]11 1rank I F G qλ − =  
for all complex values of λ . Then, from (5), the eigenvalues of A  comprise the eigenvalues of 

11F  and 22F , and for any complex value of λ , 
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 [ ] [ ]11 12 1
22

220 0
I F F G

rank I F G rank q rank I F
I F

λ
λ λ

λ
− −⎡ ⎤

− = = + −⎢ ⎥−⎣ ⎦
 (6) 

Now suppose that (4) holds for every nonnegative-real-part eigenvalue of A . Then from Exercise 
9.xx, 
 [ ]rank I F G nλ − =  
for every nonnegative-real-part eigenvalue of F , and (6) shows that all eigenvalues of 22F  must 
have negative real parts. Using the eigenvalue assignability theorem on the controllable 
subsystem, we can compute 1 q×  1K  such that all eigenvalues of 11 1 1F G K+  have negative real 
parts. Then setting  
 [ ]1 0K K=  
we have that  

 11 1 1 12

220
F G K F

F GK
F

+⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
 

has negative real part eigenvalues. As in the proof above, this implies that the gain 1KP−  is such 
that 1( )A BKP−+  has negative real parts, so (1) is stabilizable. 
Now suppose (1) is stabilizable. Going through the change of variables again, there exists a 

[ ]1 2K K K=  such that  

 11 1 1 12 1 2

220
F G K F G K

F GK
F

+ +⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
 

has negative-real-part eigenvalues, which implies that 22F  has negative-real-part eigenvalues. 
Thus for any λ  with nonnegative real part, (6) implies that 
 [ ]rank I F G q n q nλ − = + − =  
Invoking Exercise 9.xx once more shows that (4) holds for any λ  with nonnegative real part 
 
 
For apparent reasons, the rank condition in this result referred to as the stabilizability condition. 
 
Transfer Function Analysis 

 
Basic issues of stabilization are somewhat different when feedback is treated in a transfer 
function setting, because feedback occurs via subsystem outputs, possibly through compensators 
(additional LTI subsystems). We will consider the issue for unity feedback systems of the type 
treated in Section 8, leaving other cases to the exercises. Throughout we assume that each 
subsystem is described by a coprime, proper-rational transfer function, and that the feedback 
system is well posed. 
 
The subtlety of the stabilization issue can be illustrated by a very simple case. 
 
Example   
For the system shown below 
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with 

 1 1( ) , ( )
1 1

sC s P s
s s
− −

= =
+ −

 

a simple calculation gives 

 ( ) ( ) ( ) 1
( ) 1 ( ) ( ) 2

Y s C s P s
R s C s P s s

−
= =

− +
 

Clearly the closed-loop system is uniformly bounded-input, bounded-output stable. However, it is 
not internally stable, as the following state equation analysis reveals. Taking the minimal 
realization 

 
( ) ( ) ( )
( ) ( )

x t x t v t
y t x t

= +
= −

 

for ( )P s , and  

 
( ) ( ) ( )
( ) 2 ( ) ( )

z t z t e t
v t z t e t

= − +
= − +

 

for ( )C s , a closed-loop state equation can be formed by using the relation 
( ) ( ) ( ) ( ) ( )e t r t y t r t x t= + = −  to eliminate the variable ( )e t . This gives 

 

[ ]

( ) 0 2 ( ) 1
( )

( ) 1 1 ( ) 1

( )
( ) 1 0

( )

x t x t
r t

z t z t

x t
y t

z t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

 

From calculation of the characteristic polynomial of the closed-loop “ A ” matrix, 

 22
det 2 ( 1)( 2)

1 1
λ

λ λ λ λ
λ

⎡ ⎤
= + − = − +⎢ ⎥+⎣ ⎦

 

we see a positive eigenvalue which implies that the closed-loop state equation is not 
asymptotically stable. 
 
 
To capture the notion of internal stability from a transfer function perspective is not completely 
trivial. In the example the additional transfer functions  

 ( ) ( ),
( ) ( )

E s V s
R s R s

 

also have negative-real-part poles, so the instability is hidden from these as well. The key is to 
add additional input and output signals such that the internal instability appears as a failure of 
input-output stability in at least one of the closed-loop transfer functions from an input to an 
output. In the unity feedback system, if we add an input ( )W s , shown below 
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then  

 ( ) ( ) ( 1)
( ) 1 ( ) ( ) ( 1)( 2)

Y s P s s
W s C s P s s s

− +
= =

− − +
 

is not uniformly bounded-input, bounded-output stable. Similar examples show that we must also 
define another output signal in order to avoid other hidden-instability possibilities. 
 
The analysis must be performed for the particular interconnection structure at hand. We will 
consider the system shown above, with inputs ( )R s  and ( )W s , and outputs ( )Y s  and ( )V s . It is 
assumed that ( )C s  and ( )P s  are coprime, proper rational transfer functions, and that the 
feedback system is well posed. It is straightforward to calculate the transfer functions, 

 ( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

P s C s P sY s R s W s
P s C s P s C s

= +
− −

 (7) 

and 

 ( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

C s P s C sV s R s W s
P s C s P s C s

= +
− −

 (8) 

 
Lemma   
If all poles of the transfer functions 

 ( ) ( ) ( ) ( ),
( ) 1 ( ) ( ) ( ) 1 ( ) ( )

Y s P s V s C s
W s P s C s R s P s C s

= =
− −

 (9) 

have negative real parts, then all poles of 

 ( ) ( )
1 ( ) ( )

P s C s
P s C s−

 

have negative real parts. 
 
Proof    
Write the coprime subsystem transfer functions to display the numerator and denominator 
polynomials as 

 ( )( )( ) , ( )
( ) ( )

CP

P C

n sn sP s C s
d s d s

= =  

Then straightforward calculations give 
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( ) ( )( )
1 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
1 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
1 ( ) ( ) ( ) ( ) ( ) ( )

P C

P C P C

C P

P C P C

P C

P C P C

n s d sP s
P s C s d s d s n s n s

n s d sC s
P s C s d s d s n s n s

n s n sP s C s
P s C s d s d s n s n s

=
− −

=
− −

=
− −

 

Suppose that the first two transfer functions have negative-real-part poles, but the third has a pole 
os  with Re{ } 0os ≥ . Then  

 ( ) ( ) ( ) ( ) 0P o C o P o C od s d s n s n s− =  (10) 
and 

 
( ) ( ) 0
( ) ( ) 0

C o P o

P o C o

n s d s
n s d s

=
=

 (11) 

Therefore either ( ) 0C on s =  or  ( ) 0P od s =  and either ( ) 0P on s =  or ( ) 0C od s = . Due to 
coprimeness, ( )P on s   and ( )P od s  cannot both be zero, nor can ( )C on s   and ( )C od s . This implies 
that either ( ) ( ) 0C o P on s n s= = , which by (10) implies ( ) ( ) 0P o C od s d s = , a contradiction of 
subsystem coprimeness, or ( ) ( ) 0C o P od s d s= = , which by (10) implies ( ) ( ) 0P o C on s n s = , another 
contradiction. 
 
 
Theorem   
The well-posed unity feedback system is internally stable if and only if all poles of the transfer 
functions in (9) have negative real parts. 
 
Proof    
To address internal stability of the feedback system, we first develop a state equation description. 
Suppose that a minimal realization for ( )P s  is 

 
( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x t Ax t Bu t Ax t B v t w t

y t Cx t Du t Cx t D v t w t

= + = + +

= + = + +
 

and a minimal realization for ( )C s  is 

 
( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

z t Fz t Ge t Fz t G r t y t

v t Hz t Je t Hz t J r t y t

= + = + +

= + = + +
 

It is convenient to compute in partitioned matrix form, so we combine these expressions into the 
matrix equations 

 

( ) 0 ( ) 0 ( ) 0 ( )
( ) 0 ( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( ) 0 ( )
( ) 0 ( ) 0 ( ) 0 ( )

x t A x t B r t B y t
z t F z t G w t G v t

y t C x t D r t D y t
v t H z t J w t J v t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (12) 

To solve for the output, write 

 
1 ( ) 0 ( ) 0 ( )

1 ( ) 0 ( ) 0 ( )
D y t C x t D r t

J v t H z t J w t
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

By the assumption that the feedback system is well posed, we have that 
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1

1
D

L
J

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

is invertible, so that (12) can be rewritten as 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

cl cl

cl cl

x t x t r t
A B

z t z t w t

y t x t r t
C D

v t z t w t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (13) 

where 

 

1

1

1 1

1

1

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
( )

0 0 0

0
0

0
0

cl

cl

cl

cl

A B C
A L

F G H

B B D
B L

G G J

B B B
L I L L

G G G

C
C L

H

D
D L

J

−

−

− −

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (14) 

Of course, the transfer functions in (7) and (8) are the four entries in the 2 2×  transfer function 
matrix 
 1( )cl cl cl clC sI A B D−− +  (15) 
Next we show, by contradiction arguments, that the closed-loop state equation specified by (13) 
and (14) is controllable and observable. If it is not controllable, then there exist a scalar λ  and 
nonzero vector T T T

A Fp p p⎡ ⎤= ⎣ ⎦  such that  

 10
, 0

0
T T T T

cl cl

B
p A p p B p L

G
λ −⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

This gives 

 
0

, 0
0

T T T T T T T T
A F A F A F A F

A
p p p A p F p p p G p B

F
λ λ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

But either Ap  or Fp  is nonzero, and this implies that the corresponding subsystem state equation 
is not reachable, which is a contradiction. If the closed-loop state equation is not observable, then 
there exist a scalar λ  and nonzero vector 

 A

F

p
p

p
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

such that  

 1 0
, 0

0cl cl

C
A p p C p L p

H
λ − ⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

This gives 

 
0

, 0
0

A A A A

F F F F

p Ap p CpA
p Fp p HpF

λ
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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and, as above, a contradiction with observability of the subsystem state equations. 
Now suppose that the closed-loop state equation is internally stable, that is, all eigenvalues of clA  
have negative real parts. This implies uniform bounded-input, bounded-output stability of the 
closed-loop system, in particular from each scalar input to each scalar output. Therefore the 
transfer functions in (9) have negative-real-part poles.  
Finally, suppose the closed-loop state equation is not internally stable.  Since the state equation is 
minimal, the closed-loop system cannot be uniformly bounded-input, bounded-output stable, and 
thus at least one of the transfer functions in (7), (8) has a pole with non-negative real part. Using 
the lemma, this implies that at least one of the transfer functions in (9) has a pole with non-
negative real part. 
 
 
Corollary   
Supposing that ( )C s  has negative real part poles, the well-posed unity feedback system is 
internally stable if and only if all poles of  

 ( ) ( )
( ) 1 ( ) ( )

Y s P s
W s P s C s

=
−

 

have negative real parts. 
 
The proof of this result is left as an exercise. There is a symmetric corollary if ( )P s  is assumed to 
have negative-real-part poles, and also 
 
Corollary   
Supposing that both ( )C s  and ( )P s  have negative real part poles, the well-posed unity feedback 
system is internally stable if and only if all poles of  

 ( ) 1
( ) 1 ( ) ( )

E s
R s P s C s

=
−

 

have negative real parts. 
 
Stabilizing Controller Parameterization 
 
The set of all (proper, rational) compensator transfer functions, ( )C s , that yield an internally 
stable closed-loop system can be described in reasonably explicit terms, especially for the case 
where ( )P s  has negative real part poles. Because of its (almost deceptive) simplicity, we will 
focus on this case even though it excludes the typical situation where ( )P s  has one or more poles 
at 0s = . 
 
Theorem    
Consider the well-posed unity feedback system where all poles of  ( )P s  have negative real parts. 
The set of all proper rational transfer functions ( )C s  for which the closed-loop system is 
internally stable is given by 

 ( )( )
1 ( ) ( )

Q sC s
P s Q s

=
+

 

where ( )Q s  is a proper rational function with negative-real-part poles. 
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Proof   
First suppose ( )C s  is such that the closed-loop system is internally stable. Then, in particular, the 
transfer function 

 ( )
1 ( ) ( )

C s
P s C s−

 

has negative-real-part poles. Let 

 ( )( )
1 ( ) ( )

C sQ s
P s C s

=
−

 

for then elementary algebra gives 

 ( )( )
1 ( ) ( )

Q sC s
P s Q s

=
+

 (16) 

and thus ( )C s  is a member of the claimed set. 
Now suppose that ( )Q s  is a proper rational function with negative-real-part poles. Let ( )C s  be 
defined by (16). Then the transfer functions 

 
( )

1 ( ) ( )
( ) ( )

1 ( ) ( )

( ) ( )
1 ( ) ( ) 1

Q s
P s Q s
P s Q s
P s Q s

C s Q s
P s C s

+

+

= =
− −

 

and 

 2
( ) ( )

1 ( ) ( )

( ) ( ) ( ) ( ) ( )
1 ( ) ( ) 1 P s Q s

P s Q s

P s P s P s P s Q s
P s C s

+

= = +
− −

 

both are proper rational with all poles having negative real parts. (It should be clear that sums and 
products of such transfer functions retain the properties.) Thus by the theorem, the closed-loop 
system is internally stable. 
 
 
 
 
Exercises 
 
 
1. Can the state equation 

 

[ ]

0 1 0
( ) ( ) ( )

1 0 1

( ) 0 1 ( )

x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=

 

be made AS by output feedback? Is the state equation reachable? Observable? 
 
2.  Show that if  
 [ ]rank I A B nλ − =  
for all λ  with nonnegative real part,  then  
 1 1rank I P AP P B nλ − −⎡ ⎤− =⎣ ⎦  

for all λ  with nonnegative real part. 
 
3.  For the open-loop system described by the state equation 
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[ ]

0 1 0 0
( ) 0 0 1 ( ) 0 ( )

6 5 2 1

( ) 2 1 1 ( )

x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

= −

 

is there a linear state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  
such that the closed-loop system has transfer function 

 
1( )

3clG s
s

=
+

 

If so, is the closed-loop system uniformly bounded-input, bounded-output stable? Is it internally 
stable? 
 
4.  Suppose that the linear state equation 
 ( ) ( ) ( )x t Ax t Bu t= +  

is controllable and TA A+ is negative semi-definite. Show that the state feedback 

 ( ) ( )Tu t B x t= −  
yields an asymptotically stable closed-loop state equation. (Hint: One approach is to directly 

consider an arbitrary eigenvalue-eigenvector pair for TA BB− .) 
 
5.  (a) Consider the linear state equation  

( ) ( ) ( )x t Ax t Bu t= +  
and suppose the n n×  matrix F  has the characteristic polynomial det( ) ( )I F pλ λ− = . If the 
m n×  matrix R  and the invertible, n n×  matrix Q  are such that 
 AQ QF BR− =  
show how to choose an m n×  matrix K  such that A BK+  has characteristic polynomial ( )p λ . 
(b) Note that controllability of the open-loop state equation is not assumed. If it is not 
controllable, what are the implications for this approach to eigenvalue assignment? 
 
6.  Consider the feedback system shown below, where ( )P s  and ( )C s  are proper rational 
functions, 

 
and where the system is assumed to be well posed. Determine which two transfer functions must 
checked to guarantee internal stability. 
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10. Observers and Output Feedback 
 
The authority of state feedback to adjust the dynamics of an open-loop state equation, assuming 
controllability, motivates the notion of estimating the state of open-loop system from the output 
and then using feedback of the state estimate. In addition, the problem of estimating the state 
from the output is of basic interest on its own. 
 
Full State Observers 
 
Consider the dimension- n  linear state equation 

 
( ) ( ) ( ), (0)
( ) ( ) ( )

ox t Ax t Bu t x x
y t Cx t Du t

= + =
= +

 (1) 

where the initial state, ox , is unknown. The objective is to use knowledge of the input and output 
signals to generate an n -dimensional vector function ˆ( )x t  that is an asymptotic estimate of ( )x t  
in the sense that 
 [ ]ˆlim ( ) ( ) 0t x t x t→∞ − =  
It is natural to think of generating the estimate via another n -dimensional linear state equation 
that accepts as inputs the signals ( )u t  and ( )y t  from (1), 
 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) , (0) ox t Fx t Gu t Hy t x x= + + =  (2) 
where the coefficient matrices F , G , and H , and the initial state ˆox , remain to be specified. 
Then the estimate error satisfies 
 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) , (0) (0) o ox t x t A HC x t Fx t B G HD u t x x x x− = − − + − − − = −  (3) 
If it happens that ˆo ox x= , a natural requirement to impose on (3) is that ˆ( ) ( )x t x t=  for all 0t ≥ . 
That is, if we actually know the unknown initial state, then the estimate should be exact for all 

0t ≥ . This will be satisfied if we choose  
 ,F A HC G B HD= − = −  
(leaving H  unspecified, at this point), for then 
 ˆ ˆ ˆ( ) ( ) [ ][ ( ) ( )] , (0) (0) 0x t x t A HC x t x t x x− = − − − =  
and, indeed, this implies that ˆ( ) ( )x t x t=  for all 0t ≥ . 
 
The choice of coefficients for (3) yields the so-called state observer  
 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) , (0) ox t A HC x t B HD u t Hy t x x= − + − + =  (4) 
The initial state in (4) might be chosen as a guess at ox , or it might simply be set to zero.  
 
Defining the state-estimate error as 
 ˆ( ) ( ) ( )e t x t x t= −  
it follows from (1) and (4) that this error signal satisfies 
 ˆ( ) ( ) ( ) , (0) o oe t A HC e t e x x= − = −  (5) 
The state observer will provide an asymptotic estimate of the state if and only if H  can be 
chosen so that (5) is asymptotically stable. A sufficient condition is provided by the following 
eigenvalue assignability result, which shows that the convergence of the error can be controlled in 
a quite arbitrary fashion by choice of observer gain. 
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Theorem    
Suppose that  the linear state equation (1) is observable. Then given any set of complex numbers, 

1, , nλ λ… , conjugates included, there exists an observer gain H  for (4) such that these are the 
eigenvalues of A HC− . 
 
Proof    
Since (1) is observable, from Section 5 we can compute an invertible n n×  matrix Q  to obtain 
the observability form coefficients 

 [ ]

0

1

1

0
1

, 0 0 1
0
1 n

a

Q AQ CQ

a

−

−

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

where the last column of 1Q AQ−  displays the coefficients of the characteristic polynomial of A . 
Given a desired set of eigenvalues, 1, , nλ λ… , let  

 1 2
1

1 1 0

( ) ( )( ) ( )n
n n

n

p

p p p

λ λ λ λ λ λ λ

λ λ λ−
−

= − − −

= + + + +
 

Setting  
 [ ]0 0 1 1 1 1of n nH p a p a p a− −= − + − + − +  
an easy calculation gives 

 

0

1

1

0
1

0
1

of

n

p

Q AQ H CQ

p

−

−

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− =
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
which shows that observability form is preserved. Moreover, the coefficients of the last column 
show that this matrix has the desired eigenvalues. Since 
 ( )1 1

of ofQ AQ H CQ Q A QH C Q− −− = −  

and a similarity transformation does not alter eigenvalues, it is clear that the gain ofH QH=  is 

such that A HC−  has eigenvalues 1, , nλ λ… . 
 
 
While observability is a sufficient condition for obtaining an asymptotic estimate of the state, a 
necessary and sufficient condition can be given as follows. 
 
Theorem   
For the linear state equation (1), there exists an observer gain H  for (4) such that all eigenvalues 
of A HC−  have negative real parts if and only if 

 rank
C

n
A Iλ
⎡ ⎤

=⎢ ⎥−⎣ ⎦
 (6) 

for every λ  that is a negative real part eigenvalue of A . 
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Proof   
From results in Section 5, if 

 

-1

rank

n

C
CA

q

CA

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

for 0 q n< < , then we can assume that a state variable change has been performed such that 

 [ ]11
1

21 22

0
, 0

A
A C C

A A
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 (7) 

where 11A  is q q× , 1C  is 1 q× , and 

 

1

1 11

1
1 11

q

C
C A

rank q

C A −

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Equivalently, 

 1

11

H
rank q

I Fλ
⎡ ⎤

=⎢ ⎥−⎣ ⎦
 

for all complex values of λ . Therefore, for any complex λ , 

 [ ]
1

11 22

21 22

0
0

C
C

rank rank I A q rank I A
I A

A I A
λ λ

λ
λ

⎡ ⎤
⎡ ⎤ ⎢ ⎥= − = + −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥− −⎣ ⎦

 (8) 

If (6) holds for nonnegative-real-part eigenvalues of A , then all eigenvalues of  22A  have 
negative real parts. Also there exists 1H  such that 11 1 1A H C−  has (desired) eigenvalues, all with 
negative real parts. Then with 

 1

0
H

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

we have that all eigenvalues of 

 11 1 1

21 22

0A H C
A HC

A A
−⎡ ⎤

− = ⎢ ⎥
⎣ ⎦

 (9) 

have negative real parts. 
On the other hand, suppose H  is such that (9) has negative-real-part eigenvalues. Then 22A  has 
negative-real-part eigenvalues, and (8) implies that for every λ  with nonnegative real part, 

 
C

rank q n q n
I Aλ

⎡ ⎤
== + − =⎢ ⎥−⎣ ⎦

 

 
 
 
The rank condition in the theorem is called the detectability rank condition. 
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Reduced-Dimension Observers 
 
The state estimator developed above apparently includes some redundancy because it ignores 
information provided by the known output signal, ( )y t . (Of course, this is most clear when the 
output is one of the state variables – why estimate what is measured?) We next develop an 
( 1)n − -dimensional observer that in conjunction with the output signal yields an asymptotic 
estimate of the state. Because the observer development is a bit more complex, we make the 
simplifying assumption that 0D =  in (1).  
 
The first step is to perform a state variable change that clearly delineates the information known 
about the state. Given the linear state equation (1) with the assumptions that 0C ≠  and 0D = , 
consider the state variable change 

 1( ) ( ) ( )
b

C
z t P x t x t

P
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 

where bP  is arbitrary so long as invertibility holds. This gives, writing ( )z t  in terms of 1 1×  and 
( 1) 1n − ×  partitions, 

 

[ ]

11 12 1

21 22 2

1

( ) ( )
( )

( ) ( )

( )
( )

( )

( )
1 0

( )

a a

b b

a

b b

a

b

z t z tF F G
u t

z t z tF F G

C z t
y t C

P z t

z t
z t

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (10) 

Clearly, ( )az t  is given directly by the output signal, but ( )bz t  must be estimated. Once this 
estimate, ˆ ( )bz t , is generated, so that regardless of the initial state of (1) and the initial state of the 
observer, 
 [ ]ˆlim ( ) ( ) 0t b bz t z t→∞ − =  
then an asymptotic estimate of ( )x t  is given by 

 
1 1( ) ( )

ˆ( )
ˆ ˆ( ) ( )

a

b b b b

C z t C y t
x t

P z t P z t

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (11) 

 
To generate the asymptotic estimate ˆ ( )bz t , we use an ( 1)n − -dimensional observer of a slightly 
different form than the full-dimension observer. Specifically, let 

 
( ) ( ) ( ) ( )

ˆ ( ) ( ) ( )
c c a b

b c

z t Fz t G u t G y t
z t z t Hy t

= + +

= +
 (12) 

where the coefficients remain to be determined. The estimate error for ( )bz t , 
 ˆ( ) ( ) ( )b b be t z t z t= −  
satisfies  

 21 22 2

11 12 1

ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

b b b b c a

a b c a

b a a b

e t z t z t z t z t Hz t

F z t F z t G u t Fz t G u t

G z t HF z t HF z t HG u t

= − = − −

= + + − −

− − − −

 

Substituting for ( )cz t  from the “output” equation in (12) and collecting terms yields 
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22 12 21 11

2 1

( ) ( ) ( ) ( )

( )

b b b b a

a

e t Fe t F HF F z t F FH G HF z t

G G HG u t

⎡ ⎤⎡ ⎤= + − − + + − −⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − −⎣ ⎦

 

Now the more-or-less obvious coefficient choices 

 [ ]
22 12

21 22 12 11

2 1

b

a

F F HF

G F F HF H HF

G G HG

= −

= + − −

= −

 (13) 

lead to the error equation 
 [ ]22 12( ) ( )b be t F HF e t= −  (14) 
and we have the possibility of choosing the ( 1) 1n − ×  gain H  to achieve an asymptotic estimate 
for ˆ ( )bz t . Before addressing this, note that the coefficient choices in (13) specify the observer in 
(12) as 

 
[ ] [ ]
[ ]

22 12 21 22 12 11

2 1

( ) ( ) ( )

( )
ˆ ( ) ( ) ( )

c c

b c

z t F HF z t F F H HF H HF y t

G HG u t
z t z t Hy t

= − + + − −

+ −

= +

 (15) 

where we have written ( )az t  as ( )y t . 
 
Again we show that if observability is assumed, then the observer gain can be chosen such that 
the error equation (14) has any desired set of eigenvalues. Thus the rate of convergence of the 
asymptotic estimate in (11) to the actual state can be arbitrarily set by choice of H . 
 
Theorem   
Suppose the linear state equation (1) is observable, and 0D = . Then given any set of complex 
numbers, 1 1, , nλ λ −… , conjugates included, there exists an observer gain H  such that these are the 
eigenvalues of 22 12F HF−  . 
 
Proof   
Observability of (1) implies observability of (10), and we need only show that this implies 
observability of the ( 1)n − -dimensional state equation 

 22

12

( ) ( )
( ) ( )

d d

d

z t F z t
v t F z t

=
=

 (16) 

Proceeding by contradiction, suppose (16) is not observable. Then there exists a nonzero, 
( 1) 1n − ×  vector l  and a scalar η  such that 
 22 12, 0F l l F lη= =  
But then  

 
0
l
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

is a nonzero, 1n×  vector such that, using the coefficients of (10), 

 [ ]11 12 12

21 22 22

0 0 0
, 1 0 0

F F F l
F F F ll l l

η
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

This implies that (10) is not observable, which in turn implies that (1) is not observable – a 
contradiction.  
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Remark   
If more information about the state can be measured directly, for example, the output is a 1p×  
vector signal with rankC p= , then a similar development leads to an observer of dimension 
n p− .   
 
Observer State Feedback 
 
The notion of using an asymptotic estimate of the state for (linear) feedback yields a powerful 
approach to considering dynamic output feedback in a state equation setting. We consider the 
full-dimension observer here, leaving the similar development for the reduced-dimension 
observer to an exercise. 
 
For the open-loop state equation (1), consider linear dynamic feedback comprising static linear 
feedback of the state observation provided by  

 
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
x t A HC x t B HD u t Hy t
u t Kx t Nr t

= − + − +
= +

  

Writing the observer as 

 ( )ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( )

x t A HC x t B HD u t H Cx t Du t
A HC x t Bu t HCx t

= − + − + +

= − + +
 

the 2n -dimensional closed-loop state equation, written in the partitioned form, 

 

[ ]

( ) ( )
( )

ˆ( )ˆ( )

( )
( ) ( )

ˆ( )

x t A BK x t BN
u t

HC A BK HC x t BNx t

x t
y t C DK DNr t

x t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

 (17) 

 
Theorem   
Suppose the open-loop state equation is controllable and observable. Then the 2n  eigenvalues of  
closed-loop state equation (17) are given by the union of the n  eigenvalues of A BK+  and the n  
eigenvalues of A HC− , both sets that can be arbitrarily assigned by choice of K  and H , 
respectively. Furthermore the closed-loop transfer function is given by 

 ( ) 1( ) ( )
( )

Y s C DK sI A BK BN DN
R s

−= + − − +  

so that the closed-loop poles are independent of the observer. 
 
Proof   
To investigate the properties of this state equation, it is convenient to perform the state variable 
change 

 
( ) 0 ( )

ˆ( ) ( )
a

a

z t I x t
z t I I x t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
 

where the 2 2n n×  variable change matrix is clearly invertible, and in addition is its own inverse. 
This yields the closed-loop state equation 
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[ ]

( ) ( )
( )

( ) ( )0 0

( )
( ) ( )

( )

a a

b b

a

b

z t z tA BK BK BN
u t

z t z tA HC

z t
y t C DK DK DNr t

z t

+⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
= + − +⎢ ⎥

⎣ ⎦

 (18) 

From the block-triangular form of the closed-loop A -matrix, the eigenvalue claim follows from 
previous results. Furthermore, the inverse of an invertible, block-triangular matrix is block 
triangular, and it turns out that in computing the transfer function for (18) only the diagonal 
blocks of the inverse are needed. Thus it is straightforward to verify the transfer function claim. 
 
 
The rather surprising fact that the eigenvalues of the closed-loop state equation (17) comprise the 
eigenvalues of A BK+  and those of A HC−  is called the separation property of observer state 
feedback. 
 
Exercises 
 
1. Suppose the dimension-n state equation 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

is reachable and observable. Consider the dimension-2n state equation comprising this state 
equation together with its full-dimension observer, 
 ( ) ( ) ( ) ( ) ( )z t A HC z t HCx t Bu t= − + +  
What are the reachability and observability properties of this new state equation? 
 
2.  For the plant 

 

[ ]

0 1 2
( ) ( ) ( )

1 2 1

( ) 1 1 ( )

x t x t u t

y t x t

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=

 

compute a 2-dimensional observer such that the error decays exponentially with time constants 
1/10.  
 
3. Repeat Exercise 2 using a 1-dimensional observer. 
 
4. Suppose the linear state equation  

 
( ) ( ) ( )

( ) 0 ( )p

z t Az t Bu t

y t I z t

= +

⎡ ⎤= ⎣ ⎦
 

is reachable and observable. Consider dynamic output feedback of the form 
 ˆ( ) ( ) ( )u t Kz t Nr t= +  
where ˆ( )z t  is a state estimate generated by the reduced-dimension observer discussed in class. 
Describe the eigenvalues of the closed-loop state equation. What is the closed-loop transfer 
function? 
 
5. For the linear state equation (p-output) 
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( ) ( ) ( ) , (0)
( ) ( )

ox t Ax t Bu t x x
y t Cx t

= + =

=
 

suppose the ( )n p n− ×  matrix bP  and the asymptotically stable ( )n p− − dimensional state 
equation 
 ( ) ( ) ( ) ( )a bz t Fz t G u t G y t= + +  
satisfy the following additional conditions: 

 , 0 ,b b b a b
b

C
rank n FP P A G C G P B

P
⎡ ⎤

= = − + =⎢ ⎥
⎣ ⎦

 

(a) Show that the ( ) 1n p− ×  error vector ( ) ( ) ( )b be t z t P x t= −  satisfies 

 ( ) ( )b be t Fe t=  
(b) Writing 

 [ ]
1

b

C
H J

P

−
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 

where H is n p× , show that  
 ˆ( ) ( ) ( )x t Hy t Jz t= +  
provides an asymptotic estimate for ( )x t . 
 
6.  Suppose that the SISO linear state equation 

( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

is reachable and observable. Given an ( 1) ( 1)n n− × −  matrix F and an 1n×  matrix H, consider 
the dynamic output feedback 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

z t Fz t Gv t
v t y t CLz t
u t Mz t Nv t

= +
= +
= +

 

where the matrices G, L, M satisfy 

 
AL BM LF
LG BN H

− =
+ = −

 

Show that the 2 1n−  eigenvalues of the closed-loop state equation are given by the eigenvalues 
of F and the eigenvalues of A HC− . Hint: Consider the state variable change defined by 

 
0
I L

I
⎡ ⎤
⎢ ⎥
⎣ ⎦
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11. Output Regulation 
 
As a further illustration of the power of the observer idea in feedback control problems, we 
consider a special type of reference tracking and disturbance rejection problem that corresponds 
to an elementary problem in introductory control systems courses. 
 
Example  
A familiar example from classical control is the unity-feedback servomechanism shown below 

 
where 

 ( )
( )

KP s
s s a

=
+

 

with , 0K a > . This system has the capability to asymptotically track constant reference inputs, 
( )r t , while asymptotically rejecting constant disturbances. To confirm this, compute the closed-

loop transfer functions to obtain 

 
2

2 2

( ) 1( ) ( ) ( )
1 ( ) 1 ( )

( ) ( )

G sY s R s W s
G s G s

K s asR s W s
s as K s as K

= +
+ +

+
= +

+ + + +

 

The closed-loop poles of each transfer function have negative real parts, because of the positive 
coefficients, and if 

 ( ) , ( )o or wR s W s
s s

= =  

then, regardless of the values of or  and ow , 

 0 0 2 2

( )lim ( ) lim ( ) lim
( )

o o
t s s

o

Kr s a wy t sY s s
s s as K s as K

r

→∞ → →

⎡ ⎤+
= = +⎢ ⎥+ + + +⎣ ⎦
=

 

 
 
Problems of the type giving rise to this example can be formulated in terms of state equations as 
follows. Consider the open-loop state equation 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t Ew t
y t Cx t Fw t

= + +
= +

 (1) 

where ( )w t  is a scalar disturbance input, and where we have assumed 0D =  to de-clutter the 
development. Using output feedback the objectives for the closed-loop state equation are that the 
output signal should asymptotically track any constant reference input regardless of any 
(unknown) constant disturbance input. This is an example of an output regulation problem, or 
servomechanism problem. 
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A key step in the solution of this problem is to assume that the unknown, constant disturbance is 
provided by a known exosystem with unknown initial state, namely 
 ( ) 0 , (0) ow t w w= =  (2) 
Then an observer can be used to estimate the state of the augmented state equation comprising the 
open-loop system and the exosystem: 

 

[ ]

( ) ( )
( )

( ) 0 0 ( ) 0

( )
( )

( )

x t A E x t B
u t

w t w t

x t
y t C F

w t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3) 

The full-state observer structure for this augmented open-loop state equation has the form 

 
[ ]1 1

2 2

1 1 1

2 2 2

ˆ ˆ( ) ( )
( ) ( )

ˆ0 0 ( ) 0ˆ ( )
ˆ( )

( ) ( )
ˆ ( ) 0

H Hx t A E x t B
C F u t y t

H Hw tw t

A H C E H F Hx t B
u t y t

H C H F Hw t

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + +⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎝ ⎠⎣ ⎦
− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4) 

Linear feedback of the augmented-state has the form 

 [ ]1 2

ˆ( )
( ) ( )

ˆ ( )
x t

u t K K Nr t
w t
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 (5) 

and the resulting closed-loop state equation can be written as 

 

[ ]

1 2

1 1 1 2 1 1

2 2 2 2

( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

ˆ ( ) 0ˆ ( )

( )
ˆ( ) 0 0 ( ) ( )
ˆ ( )

x t A BK BK x t BN E
x t H C A BK H C E BK H F x t BN r t H F w t

H C H C H F w t H Fw t

x t
y t C x t Fw t

w t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − + − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

 (6) 

It remains only to collect the assumptions required to guarantee that the various gains can be 
chosen to render (6) asymptotically stable with the desired asymptotic output response to constant 
inputs. The first part is nothing more than an application of full-state observer developments from 
Section 10 to a (slightly cluttered) augmented state equation. 
 
Theorem    
Suppose the linear state equation (1) is controllable (for 0E = ), the augmented state equation (3) 
is observable, and the ( 1) ( 1)n n+ × +  matrix 

 
0

A B
C
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (7) 

is invertible. Then given any set of complex numbers, 1 2 1, , nλ λ +… , conjugates included, there 
exist gains 1 1,K H and 2H  such that these are the eigenvalues of the closed-loop state equation 
(6). Furthermore, assuming these eigenvalues have negative real parts, the gains 

 1
1

1
2 1

1
( )

( )

N
C A BK B

K NC A BK E NF

−

−

−
=

+

= + −

 (8) 
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are such that for any constant inputs ( ) ow t w=  and ( ) or t r= , 0t ≥ , the response of the closed-
loop state equation has final value or . 
 
Proof    
The closed-loop state equation (6) is more conveniently analyzed after application of the state 
variable change  

 
0 0 ( )

ˆ( ) 0 ( )
ˆ0 0 1 ( )

I x t
z t I I x t

w t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

where the (2 1) (2 1)n n+ × +  variable change matrix clearly is invertible, and in addition is its own 
inverse. This gives the closed-loop state equation 

 

[ ]

1 1 2

1 1 1

2 2 2

( ) 0 ( ) 0 ( ) ( )
0 0

( ) 0 0 ( ) ( )

A BK BK BK BN E
z t A H C E H F z t r t E H F w t

H C H F H F

y t C z t Fw t

+ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= +

 (9) 

Using the block triangular form of the A -matrix in (9), the eigenvalues of the closed-loop state 
equation are the union of the eigenvalues of  
 1A BK+  
and the eigenvalues of 

 [ ]1 1 1

2 2 20 0
A H C E H F HA E

C F
H C H F H
− −⎡ ⎤ ⎡ ⎤⎡ ⎤

= −⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎣ ⎦⎣ ⎦ ⎣ ⎦
 

The controllability and observability hypotheses imply that these eigenvalues can be placed as 
desired.  
 
To verify the input-output behavior, we compute the closed-loop transfer function in terms of the 
state equation (9). Careful partitioned calculations verify that 

 
[ ]

1
1 1 2

1 1

2 2

1
1 11 1

1 1 1 2
2 2

1
1 1

2 2

0
0

( ) ( )

0

A BK BK BK
sI A H C E H F

H C H F

sI A H C E H F
sI A BK sI A BK BK BK

H C sI H F

sI A H C E H F
H C sI H F

−

−

− −

−

⎛ ⎞+ − −⎡ ⎤
⎜ ⎟⎢ ⎥− − −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− −⎣ ⎦⎝ ⎠

⎡ ⎤− + − +⎡ ⎤
− − − − −⎢ ⎥⎢ ⎥+⎢ ⎥⎣ ⎦= ⎢ ⎥

− + − +⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦

 

and then partitioned multiplications give 

 

1 1
1 1

1 1
1 1 1 2

1
1 1 1

2 2 2

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

Y s C sI A BK BN R s C sI A BK E W s

C sI A BK BK C sI A BK BK

sI A H C E H F E H F
W s F W s

H C sI H F H F

− −

− −

−

= − − + − −

⎡ ⎤− − − − −⎣ ⎦

− + − + −⎡ ⎤ ⎡ ⎤
⋅ +⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦

 (10) 
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Assuming all eigenvalues, and thus poles, of the closed-loop state equation have negative real 
parts, the final value theorem can be used to compute the final value of the response to the 
constant input signals, 

 ( ) , ( )o or wR s W s
s s

= =  

From (10), simplifying the most complex term at 0s =  using 

 1 1 1

2 2 2

0
1

A H C E H F E H F
H C H F H F

− + − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

 

we have 

(

0

1
0 1

1 1 1
0 1 1 1 1 2

1
1 1 1

2 2 2

1 1
1 1

lim ( ) lim ( )

lim ( )

lim ( ) ( ) ( )

( ) ( ) (

t s

s o

s

o o

o

y t sY s

C sI A BK BN r

C sI A BK E C sI A BK BK C sI A BK BK

sI A H C E H F E H F
w Fw

H C sI H F H F

C A BK BN r C A BK E C A B

→∞ →

−
→

− − −
→

−

− −

=

⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ − − − − − − −⎣ ⎦

⎞− + − + −⎡ ⎤ ⎡ ⎤
⎟⋅ +⎢ ⎥ ⎢ ⎥ ⎟+ −⎣ ⎦ ⎣ ⎦ ⎠

= − + + − + − + 1
1 2) oK BK F w−⎡ ⎤+⎣ ⎦

 

Now the choices of N  and 2K  in (8), with invertibility of 1
1( )C A BK B−+  provided by the 

invertibility hypothesis on (7) per Exercise 8.3, yield the claimed final value for the output. 
 
 
Remark   
The result remains essentially the same for the case where ( )y t  and ( )u t  are 1m× , and ( )w t  is 

1q× , in (1). Also the theory can be generalized significantly to handle asymptotic tracking with 
bounded, time-varying disturbance inputs generated by LTI exosystems 
more general than (2). 
 
Exercises 
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12. Noninteracting Control 
 
In addition to the powerful properties of state feedback in modifying the dynamics of a given 
open-loop state equation, state feedback can also modify the input-output structure of multiple-
input, multiple-output state equations. In particular, state feedback can be used to isolate selected 
outputs from selected inputs. We illustrate this capability by considering a very basic problem 
called, variously, the noninteracting control problem, or the decoupling problem. 
 
Consider the linear state equation 

 
( ) ( ) ( ) , (0) 0
( ) ( )

x t Ax t Bu t x
y t Cx t

= + =
=

 (1) 

where the input ( )u t  and the output ( )y t  both are 1m×  vector signals, 2 m n≤ ≤ . The objective 
is to use linear state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  (2) 
where ( )r t  is 1m×  and N  is invertible so that the zero-state response of the closed-loop state 
equation 

 
( ) ( ) ( ) ( )
( ) ( )

x t A BK x t BNr t
y t Cx t

= + +
=

 (3) 

satisfies the following noninteracting property. For i j≠  the thj -input component, ( )jr t , should 

have no effect on the thi -output component, ( )iy t , for all 0t ≥ . Put another way, the closed-loop 
transfer function and/or the closed-loop unit-impulse response should be a diagonal ( m m× ) 
matrix. 
 
Remark   
The assumption that the input gain N  is invertible avoids trivial solutions, for example 0N = . 
Also, it turns out that if the problem has a solution, this assumption guarantees that the 
noninteracting closed-loop state equation is output controllable (from each input component to its 
corresponding output component) in the sense of Exercise xx.  
 
The analysis of the noninteracting control problem further illustrates some of the intricate 
calculations involved in feedback control. The problem can be addressed either in terms of 
transfer functions or in terms of unit-impulse responses, and here we use the latter. It is 
convenient to write the m n×  matrix C  in terms of its rows as 

 
1

m

C
C

C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and to write the closed-loop unit pulse response as 

 

( )
1

( )

( )

( ) , 0

A BK t

A BK t

A BK t
m

C e BN
H t Ce BN t

C e BN

+

+

+

⎡ ⎤
⎢ ⎥= = ≥⎢ ⎥
⎢ ⎥⎣ ⎦

 

Again, the thi  row of ( )H t  should have all entries zero except for the thi  entry, 1, ,i m= … , and 
this is to be accomplished by choice of the gains K  and (invertible) N . The key is to use the 
power series representation for the matrix exponential, and consider ( )H t  row-by-row. 
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Definition   
The linear state equation (1) is said to have relative degree 1, , mκ κ…  if these positive integers are 
such that  

 
1

0 , 0, , 2

0i

j
i i

i

C A B j

C A Bκ

κ
−

= = −

≠

…
 

for 1, ,i m= … . 
 
The utility of this definition for the present purposes is  
 
Lemma   
If the linear state equation (1) has relative degree 1, , mκ κ…  , then for any K  and for 1, ,i m= … , 
 ( ) , 0, , 1j j

i i iC A BK C A j κ+ = = −…  (4) 
 
 
Proof   
For 0j = , the claim is obvious. For any 0j > , ( ) j

iC A BK+  can be written as j
iC A  plus a sum 

of terms, each with leading factor of one of the forms 1, , , j
i i iC B C AB C A B−… . Thus (4) follows 

from the definition of relative degree. 
 
 
Theorem   
If the linear state equation (1) has relative degree 1, , mκ κ…  , then there exist gains K  and 
invertible N  that achieve noninteracting control if and only if the m m×  matrix 

 

1 1
1

1m
m

C A B

C A B

κ

κ

−

−

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

is invertible. 
 
Proof   
For any 1, ,i m= … , the thi -row of the closed-loop unit impulse response can be written as 

 ( )

0
( )

!

j
A BK t j

i i
j

tC e BN C A BK BN
j

∞
+

=

= +∑  

The objective is to choose K  and N  so that (for every i ) this has the form ( )i if t e , where ie  is 
the thi -row of the m m×  identity matrix. We proceed in a plodding fashion, working through the 
terms as the index j  increases… with somewhat surprising results! 
Fixing i , for 0, , 1ij κ= −… , 

 1

0, 0, , 2
( )

, 1i

ij j
i i

i i

j
C A BK BN C A BN

C A BN jκ

κ
κ−

= −⎧
+ = = ⎨ = −⎩

…
 

Choosing the gain 1N −= Δ , so that 1i
i iC A BN eκ − = , we meet the objective for 0, , 1ij κ= −… . For 

ij κ= ,  

 
1 1

1 1

( ) ( )i i

i i

i i

i i

C A BK BN C A A BK B

C A C A BK B

κ κ

κ κ

− −

− −

+ = + Δ

⎡ ⎤= + Δ⎣ ⎦
 (6) 
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Now choose 

 

1
1

1

m
m

C A
K

C A

κ

κ

−

⎡ ⎤
⎢ ⎥= −Δ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Then 

 

1 1
1 1

1 1 1i i i

m m

i i i i

m m

C A C A
C A BK C A B e C A

C A C A

κ κ

κ κ κ

κ κ

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − Δ = − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

so that 
 1 1( ) ( ) 0i i i i

i i i iC A BK C A A BK C A C A BKκ κ κ κ− −+ = + = + =  
 
Using this in (6) gives 
 ( ) 0i

iC A BK BNκ+ =  
Finally, for any 1ij κ≥ + ,  

 
( ) ( ) ( )

0 ( ) 0

i i

i

jj
i i

j

C A BK BN C A BK A BK BN

A BK BN

κ κ

κ

−

−

+ = + +

= ⋅ + =
 

Therefore, by the choices made for K  and N , which were independent of the index i , we have 

 

1 1

1
( )

1

( 1)!

( 1)!

m

A BK t

m

t

Ce BN
t

κ

κ

κ

κ

−

+

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (7) 

and the closed-loop state equation is noninteracting. 
 
Given the linear state equation (1), with relative degree 1, , mκ κ… , suppose that gains K  and 
invertible N  are such that noninteracting control is achieved. That is, the closed-loop unit 
impulse response is diagonal. This can be written row-wise as 
 ( ) ( ) , 1, ,A BK t

i i iC e BN h t e i m+ = = …  
Replacing the exponential by its power series representation, this implies 

 
0

( ) ( ) , 1, ,
!

k
k

i i i
k

tC A BK BN h t e i m
k

∞

=

+ = =∑ …  

Differentiating 1iκ −  times and evaluating at 0t =  gives 
1 ( 1)( ) (0) , 1, ,i i

i iC A BK BN h e i mκ κ− −+ = = …  
and using the definition of relative degree, and of N , 
 1 ( 1) (0) , 1, ,i i

i i iC A BN e N h e i mκ κ− −= Δ = = …  
Each ( 1) (0) 0i

ih κ − ≠ , otherwise, for some i ,  
 10 i

i ie N C A BNκ −= Δ =  
Since N  is invertible, this contradicts the definition of iκ . Putting the rows together again, we 
have 
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1( 1)
1

( 1)

(0)

(0)m
m

h
N

h

κ

κ

−

−

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and invertibility of the right side, and of N , implies that Δ  is invertible. 
 
 
Remark   
From (7), the choice of gains in the proof yields a noninteracting closed-loop-system with transfer 
function 

 
1

1

1

( )
1

m

s
C sI A BK BN

s

κ

κ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

− − = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (8) 

Therefore all poles of the transfer functions from the thi  input to thi  output are at 0s = . When Δ  
is invertible, there are other choices of gains for noninteracting control that might also accomplish 
additional objectives for the closed-loop state equation. For example, it should be clear that static, 
linear feedback applied to each of the single-input, single-output subsystems in (8) can provide 
bounded-input, bounded-output stability. However asymptotic stability is another matter (unless 

1 m nκ κ+ + = ), and our treatment is only the beginning of the story. 
 
 
 
Exercises 
 
1. For what values of the parameter α  can the noninteracting control problem be solved for the 
state equation 

 

0 1 0 0 0 0 0
0 0 1 1 1 0 0

( ) ( ) ( )1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 0 0 0 0
( ) ( )

0 0 1 0 0

x t x t u t

y t x t

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

For those values such that the problem can be solved, compute a state feedback control law that 
yields a noninteracting closed-loop system. 
 
2. For what values of b can the noninteracting control problem be solved for the state equation 
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0 1 0 0 1 1
0 0 1 0 0

( ) ( ) ( )
0 0 0 1 0 0
1 1 0 1 1 1

0 0 1 0
( ) ( )

0 1 0 0

b
x t x t u t

y t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

For those values such that the problem can be solved, compute a state feedback control law that 
yields a noninteracting closed-loop system. 
 
3.  Consider a linear state equation  

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

 

with p m=  and consider linear state feedback 
 ( ) ( ) ( )u t Kx t Nr t= +  
where ( )r t  is 1m× . Present conditions under which there exists such a feedback yielding an 
asymptotically stable closed-loop system with transfer function ( )clG s  for which (0)clG  is 
diagonal and invertible. These requirements define what is sometimes called an “asymptotically 
noninteracting” closed-loop system. Explain why the terminology is reasonable. 
 
 
 
 
 
 
 


